首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
田志梅 《环境科技》2002,15(3):13-15
徐州污水处理厂采用传统活性污泥法工艺处理污水,出水水质要求:CODcr≤120mg/L,BOD5≤30mg/L,SS≤30mg/l\L,为满足污水处理厂属水作为市区景观用水及下游断面达标的要求,排水指标改为:CODcr≤70mg/L,BOD5≤20mg/L,NH^ 4-N≤15mg/L.因此,须对管线予以改造,变成A/O工艺,通过小试验证明此方案可行。  相似文献   

2.
针对含硫含酸原油加工中形成的含油污水,应用红外及核磁共振对含油污水萃取物进行了表征,表明含油污水中含有石油酸类、酚类、硫化物等。乳化实验结果表明:对含油污水的乳化程度为:十二酸钠邻甲酚钠噻吩,石油酸类的乳化能力明显高于酚类和硫化物;脂肪酸的乳化能力高于环烷酸,随着碳链的增长脂肪酸的乳化能力增强。在缓蚀剂存在的条件下破乳剂没有降低对含油污水的破乳作用。破乳剂中Y系列破乳剂效果较好,其中YZM与XYY复配的破乳效果显著,在加剂量为10mg/L、温度为40℃、沉降时间为20min、初始油含量为10050mg/L时,破乳后水中油含量降至285.2mg/L,脱油率为97.2%;初始油含量为2100mg/L,破乳后水中油含量降至97.23mg/L,脱油率为95.4%。  相似文献   

3.
人工湿地植物处理含重金属生活废水的实验研究   总被引:11,自引:1,他引:10  
通过耐受浓度试验得出凤眼莲、水蕹、水花生和荇菜四种植物对含重金属生活污水中Cd2+的耐受范围值分别<5mg/L、0.5mg/L、0.2mg/L、0.2mg/L;凤眼莲和水花生对Zn2+的耐受范围值分别<10mg/L,水蕹和荇菜对Zn2+耐受范围值为<5mg/L和0.5mg/L。由植物对生活污水中锌\镉离子去除率试验可知,在Cd2+/Zn2+浓度分别为0.5mg/L和5mg/L时,与对照组相比,两种植物均能明显去除污水中的Zn2+与Cd2+,其中Cd2+去除率提高了65.3%,Zn2+去除率提高了43.7%。研究发现植物处理在前5d内为去除Zn2+/Cd2+的高效区间,这一时期内植物对Zn2+/Cd2+去除率的贡献可以达到40%~60%,表明在植物的耐受浓度范围内,湿地植物对生活污水中的Cd2+/Zn2+有较好的去除效果,根部为主要的富集器官。  相似文献   

4.
太湖秋季入湖水源中DOM的光谱学特征及通量   总被引:1,自引:0,他引:1  
秋季是太湖水体DOM含量较高的季节。运用三维荧光光谱和紫外-可见光谱等手段分析了秋季太湖周边不同入湖水源(河水、雨水、污水处理厂水、直排生活污水)中DOM的组成和来源,及对太湖DOM的影响。结果表明:不同入湖水源中DOM的光谱学特征有显著差异。其中污水处理厂进水的ρ(TOC)为(68.5±13.9)mg/L,显著高于其它类型水;而且处理前污水〔ρ(TOC)为(68.5±13.9)mg/L〕、处理后污水〔ρ(TOC)为(21.7±5.15)mg/L〕、直排生活污水〔ρ(TOC)为(25.1±9.74)mg/L〕、河水〔ρ(TOC)为(27.3±1.27)mg/L〕和北太湖湖水〔ρ(TOC)为(27.9±2.35)mg/L〕中DOM浓度高、结构复杂,且均以腐殖质为主,同时类蛋白物质含量也较高;而雨水中的DOM以类富里酸物质为主,且其DOM的f450/500(荧光指数)平均值为1.61,呈现出外源特征,但其DOM结构相对简单。东太湖湖水DOM的f450/500值在1.73~1.92之间,表明其DOM主要为内源生物降解,显示出草型湖区与北太湖藻型湖区DOM组成和来源的显著差异。不同入湖外源DOM相对太湖水体总DOM的贡献为:河水雨水污水处理厂出水直排生活污水。其中河水DOM年入湖总量大(2.42×108kg)且成分复杂,对太湖湖水DOM的组成和含量影响最显著。  相似文献   

5.
韦红钢 《环境工程》2005,23(5):24-26
介绍了新疆某高原地区炼油厂石油废水处理系统的改造工程。通过对隔油-气浮-生物接触氧化工艺的改造,解决上游装置污水严重超标排放现象;采用替换不合理设备、改建和完善气浮系统、启动和改造生化系统,改革相应配套制度等措施,使生产中产生的工业废水,经过处理后,CODCr含量<80mg/L,石油类<10mg/L,硫化物<0.1mg/L,挥发酚<0.5mg/L,出水水质达到《污水综合排放标准》(GB8978-1996)中的一级排放标准,为该厂的污水回用作循环水改造创造了条件,在此基础上实现了外排污水回用于绿化水初步目标。  相似文献   

6.
北钢动力厂石灰软化污水是由锅炉用水的石灰软化排污和高炉煤气洗涤水水质稳定的石灰软化排污所组成。污水发生量250t/h,这种污水浊度高(悬浮物含量为800~4500mg/L,有时高达15000mg/L)。且污染物具有颗粒细、粘性大、石灰质的特征。在一般处理情况下污水呈悬浊状态,很难通过自然沉降使出水悬浮物含量达标。过去一直是直排,不仅使总排口的污染物——悬浮物超标,而且亦污染了环境。  相似文献   

7.
以总还原硫(TRS)为考察指标,分析了基于厌氧-混凝-高级氧化工艺的中试系统各处理单元对转运站污水中恶臭物质的处理效果。转运站污水中,TRS总量为0.602 mg/L水,而经过厌氧、混凝、高级氧化等处理单元后依次为4.167,3.513,0.168 mg/L水。厌氧对含硫有机物的降解是恶臭物质产生的重要过程,混凝过程对污水恶臭去除作用很小。相比于混凝出水,高级氧化对恶臭物质去除率在95%以上。  相似文献   

8.
对上海市合流制管道雨污混合水及典型生活污水水质的调查结果进行了分析.结果表明,合流制管道的雨污混合水尤其是初期雨污水的水质波动大,污染负荷高.随着降雨的持续,雨污混合水的浓度逐渐降低.根据调查,上海市典型居民生活污水设计参考浓度为cODCr300mg/L,BOD51 50mg/L,NH3-N30mg/L;餐饮业污水设计参考浓度为cODCr700mg/L,BOD5200m9/L,NH3-N17mg/L;一般企事业单位生活污染源污水设计参考浓度为c0DCr400mg/L,BOD51 80mg/L,NH3-N30mg/L.  相似文献   

9.
再生水景观利用是解决城市景观用水短缺的有效途径之一。但较高氮磷浓度的再生水进入流动性较差的景观水体中极易发生水华现象。在现有再生水排放标准下,水力停留时间的调控是控制景观水体中微藻生物量的有效手段。根据微藻生长模型和水质动力学模型,提出了基于水力停留时间调控的景观水体水华控制方法及其阈值确定方法。通过计算,得到再生水氮、磷浓度执行GB 18918—2002《城镇污水处理厂污染物排放标准》A标准(总氮15 mg/L,总磷0.5 mg/L)对应的水力停留时间阈值为2.477 d;执行DB11/890—2012北京市《城镇污水处理厂水污染物排放标准》A(总氮10 mg/L,总磷0.2 mg/L)对应的水力停留时间阈值为5.034 d;执行昆明市地方标准DB5301/T43—2020《城镇污水处理厂主要污染物排放限值》A级(总氮5 mg/L,总磷0.05 mg/L)对应的水力停留时间阈值为21.659 d, B级(总氮10 mg/L,总磷0.3 mg/L)对应的水力停留时间阈值为3.783 d, C级(总氮15 mg/L,总磷0.4 mg/L)对应的水力停留时间阈值为2.811 d;执行91/...  相似文献   

10.
化学生物絮凝工艺处理城市污水试验研究   总被引:6,自引:0,他引:6  
介绍了用化学生物絮凝工艺处理上海部分地区生活污水和合流污水混合的城市污水(上海竹园排放口,简称“竹园”污水)的试验研究装置及研究过程。结果表明,在絮凝池内混合液浓度为2g/L左右、HRT=35min、PAC加入量为70mg/L、PAM为0.5mg/L,其出水平均浓度可以达到CODCr为50mg/L,TP为0.62mg/L、SS为18mg/L,BOD5为17mg/L。均优于设计要求。  相似文献   

11.
UASB+A/O+UF+NF工艺处理生活垃圾焚烧厂渗滤液   总被引:2,自引:0,他引:2  
采用"UASB+A/O+UF+NF"工艺处理生活垃圾焚烧厂渗滤液,工程规模为150 m3/d,工程总投资500万元,运行成本为25元/t;污泥处理工艺过程为:(剩余污泥+厌氧污泥)浓缩→脱水→焚烧。工程设计进水水质指标为ρ(COD)=50000 mg/L,ρ(BOD5)=25 000 mg/L,ρ(NH3-N)=600 mg/L,ρ(TP)=15 mg/L,ρ(SS)=9000 mg/L,出水主要水质指标为ρ(COD)≤50 mg/L,ρ(BOD5)≤15 mg/L,ρ(NH3-N)≤10 mg/L,ρ(TP)≤0.27 mg/L,ρ(SS)≤4 mg/L,补充到电厂循环冷却水中回用,不但实现了垃圾焚烧污水零排放,还有着较好的经济和环境效益。  相似文献   

12.
沸石生物滤池处理低浓度生活污水的工艺性能及影响因素   总被引:23,自引:3,他引:20  
为将电厂低浓度生活污水处理后回用于循环冷却水,开发了沸石滤料曝气生物滤池(ZBAF)工艺,在直径0.2m、滤料高3m的ZBAF装置中处理低浓度生活污水.结果表明,在温度为12℃~17℃,停留时间1.4h,气水比4:1,进水浊度、BOD5、CODCr和NH4+-N分别为59NTU、30mg/L、81mg/L和16mg/L时,相应的出水指标为3.2NTU、3.2mg/L、14.5mg/L和0.5mg/L,满足再生水用作循环冷却补充水的水质标准.改变水力停留时间和气水比对BOD5、CODCr和浊度去除率影响不大,但对NH4+-N去除率影响较大.生物相观察发现:反应器内脱碳/硝化区(C/N区)生物相很丰富,其中固着型纤毛虫很多;而硝化区(N区)生物相比较单一,主要为硝化菌.固着型纤毛虫数量明显减少处为2个区的分界线.  相似文献   

13.
焦化废水回用作循环冷却水的腐蚀特性   总被引:1,自引:0,他引:1  
采用静态旋转挂片法研究了焦化废水回用作循环冷却水的可行性,主要对焦化废水生化处理出水和焦化废水深度处理出水的腐蚀特性进行考察.结果表明,焦化废水生化处理出水腐蚀速率较小,仅为0.025 573 mm/a,远远低于《水处理剂缓蚀性能的测定 旋转挂片法》(GB/T18175—2000)标准值(≤0.125 mm/a),挂片表面腐蚀轻微,仅有几个点蚀,不需深度处理即可回用作循环冷却水.通过UV-Vis,FTIR及GC/MS分析可知,焦化废水生化处理出水中含有C—O,CO等极性官能团及非极性基团,与目前常用有机缓蚀剂结构相似,在回用作循环冷却水的过程中可能起到缓蚀剂的作用.   相似文献   

14.
主要对半软水作为连铸机净环水的循环冷却水系统水质稳定问题进行研究和探讨。  相似文献   

15.
根据食品添加剂废水水质变化大,成分复杂特点,提出了"水解酸化—接触氧化—臭氧催化氧化—曝气生物滤池(BAF)"的组合工艺。废水COD从进水2000~7000mg/L降到100mg/L以下,最低为33mg/L,排放水质达到国家排放标准。水解酸化系统使废水平均COD从5290mg/L降到2323mg/L,并使大颗粒难降解分子部分转化为小颗粒可降解分子,为后续的接触氧化系统处理提供良好的条件,接触氧化出水平均COD为268mg/L。接触氧化出水含较多难生物降解有机物,经O3氧化预处理后在COD下降45%的情况下其BOD5/COD由0.3升为0.44,更易于生化降解。废水经曝气生物滤池平均出水COD为66mg/L。中试研究表明,水解酸化系统和臭氧催化氧化(负载MnO2的陶粒为催化剂)-曝气生物滤池深度处理系统是该工艺处理高浓度废水稳定达标的关键。  相似文献   

16.
董利珠 《环境工程》2011,29(2):58-60,77
利用超滤+反渗透工艺深度处理钢铁厂经混凝沉淀处理后的综合污水,以制备脱盐水.设计能力为1 000 m3/h.进水水质总硬度为490 mg/L(以CaCO3计)、电导率为1 350 uS/cm,出水水质按脱盐率95%,总硬度为3 mg/L(以CaCO3计)、电导率为70 uS/cm,出水用于高炉、转炉及加热炉等高端水质用...  相似文献   

17.
石化废水经处理后回用于循环冷却水补充水不仅能降低污染物的排放量,而且还能节省大量工业用水,具有较大的经济效益和环境效益.工程设计时针对进水水质特点及出水要求,对废水常规处理工艺及后续的深度处理工艺方案进行了比较选择,确定了一条合理的处理工艺路线.废水经合适的一级预处理、二级生化处理及三级深度处理后,大部分污染物质可以被去除,出水能够回用于循环冷却水的补充水.  相似文献   

18.
为了有效的对高COD、高悬浮物的豆沙废水进行处理,本实验中选用气浮-厌氧-曝气生物滤池为主体处理工艺对其进行处理。实验结果表明:在进水水质COD为20 000 mg/L,SS为1 500 mg/L的条件下,通过本工艺,出水水质COD降为283 mg/L,SS为200 mg/L,去除率分别为98.58%和86.67%,出水水质完全达到(CJ 3082-1999)《污水排入城市下水道水质标准》。说明:本处理工艺能够对豆沙废水进行有效处理,有望成为豆沙废水处理的主流方法。  相似文献   

19.
采用锅炉节能节水近零排放成套技术对企业锅炉系统进行改造,保证企业锅炉在零排污工况下的安全、经济运行,降低了企业能源和水资源消耗,减少污染排放,降低企业生产成本,增强企业竞争力,具有安全、节能、节水、减排等特点。实践证明:锅炉吨蒸汽补水量从1.5m^3下降到0.073m^3;吨蒸汽废水排放量从1.4m^3下降到0.004m^3;吨蒸汽耗煤量由168.3kg下降到152.3k;锅水溶解固形物从3000mg/L下降到2100mg/L;碳钢腐蚀率≤0.001mm/a、阻垢率≥99.95%。2台35t/h中压锅炉年可节约费用825.3万元。  相似文献   

20.
对某一煤矿污水处理现有工艺存在的问题进行分析、探讨,根据煤炭行业环保要求及技术政策,对现有工艺进行有针对性技术改造。改造完成后,生活污水达到了《污水综合排放标准》(GB8978-1996)一级排放标准的要求;矿井水满足《工业循环冷却水处理设计规范》(GB50050-2007)对水质的要求,可用于电厂循环冷却水的补给及矿区生产,实现了矿井水的资源化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号