首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quartz particles are a toxic component of airborne paniculate matter(PM).Quartz concentrations were analyzed by X-ray diffraction in eighty-seven airborne PM samples collected from three locations in Beijing before,during,and after the Asia-Pacific Economic Cooperation(APEC) Leaders' Meeting in 2014.The results showed that the mean concentrations of quartz in PM samples from the two urban sites were considerably higher than those from the rural site.The quartz concentrations in samples collected after the APEC meeting,when the pollution restriction lever was lifted,were higher than those in the samples collected before or during the APEC meeting.The quartz concentrations ranged from 0.97 to 13.2 μg/m~3,which were among the highest values amid those reported from other countries.The highest quartz concentration exceeded the Californian Office of Environmental Health Hazard Assessment reference exposure level and was close to the occupational threshold limit values for occupational settings.Moreover,a correlation analysis showed that quartz concentrations were positively correlated with concentrations of pollution parameters PM_(10),PM_(2.5),SO_2 and NO_x,but were negatively correlated with O_3 concentration.The results suggest that the airborne quartz particles may potentially pose health risks to the general population of Beijing.  相似文献   

2.
Bioaerosols from wastewater treatment processes are a significant subgroup of atmospheric aerosols. In the present study,airborne microorganisms generated from a wastewater treatment station(WWTS) that uses an oxidation ditch process were diminished by ventilation.Conventional sampling and detection methods combined with cloning/sequencing techniques were applied to determine the groups,concentrations,size distributions,and species diversity of airborne microorganisms before and after ventilation. There were 3021 ± 537 CFU/m3 of airborne bacteria and 926 ± 132 CFU/m3 of airborne fungi present in the WWTS bioaerosol.Results showed that the ventilation reduced airborne microorganisms significantly compared to the air in the WWTS. Over 60% of airborne bacteria and airborne fungi could be reduced after4 hr of air exchange. The highest removal(92.1% for airborne bacteria and 89.1% for fungi) was achieved for 0.65–1.1 μm sized particles. The bioaerosol particles over 4.7 μm were also reduced effectively. Large particles tended to be lost by gravitational settling and small particles were generally carried away,which led to the relatively easy reduction of bioaerosol particles0.65–1.1 μm and over 4.7 μm in size. An obvious variation occurred in the structure of the bacterial communities when ventilation was applied to control the airborne microorganisms in enclosed spaces.  相似文献   

3.
A bias in clear-sky conditions that will be involved in estimating particulate matter(PM)concentration from aerosol optical depth(AOD) was examined using PM_(10) from two Aerosol Robotic Network sites in Korea. The study periods were between 2004 and 2007 at Anmyon and between 2003 and 2011 at Gosan, when both PM_(10) and AOD were available. Mean PM_(10) when AOD was available(PM AOD) was higher than that from all PM_(10)data(PM all) by 5.1 and9.9 μg/m~3 at Anmyon and Gosan, which accounted for 11% and 26% of PM all, respectively.Because of a difference between mean PM_(10) under daytime clear-sky conditions(PM clear)and PM AOD, the variations in ΔPM_(10), the difference of PM all from PM clear rather than from PM AOD, were investigated. Although monthly variations in ΔPM_(10)at the two sites were different, they were positively correlated to those in ΔT, similarly defined as ΔPM_(10)except for temperature, at both sites. ΔPM_(10)at Anmyon decreased to a negative value in January due to an influence of the Siberian continental high-pressure system while ΔPM_(10)at Gosan was high in winter due to an effect of photochemical production at higher temperatures than at Anmyon.  相似文献   

4.
Potassium silicate drilling fluids (PSDF) are a waste product of the oil and gas industry with potential for use in land reclamation. Few studies have examined the influence of PSDF on abundance and composition of soil bacteria and fungi. Soils from three representative locations for PSDF application in Alberta, Canada, with clay loam, loam and sand textures were studied with applications of unused, used once and used twice PSDF. For all three soils, applying ≥40 m3/ha of used PSDF significantly affected the existing soil microbial flora. No microbiota was detected in unused PSDF without soil. Adding used PSDF to soil significantly increased total fungal and aerobic bacterial colony forming units in dilution plate counts, and anaerobic denitrifying bacteria numbers in serial growth experiments. Used PSDF altered bacterial and fungal colony forming unit ratios of all three soils.  相似文献   

5.
Well-designed health studies and the development of effective regulatory policies need to rely on an understanding of the incremental differences in particulate matter concentrations and their sources. Although only a limited number of studies have been conducted to examine spatial differences in sources to particulate matter within an air shed, routine monitoring data can be used to better understand these differences. Measurements from the US EPA Chemical Speciation Network (CSN) collected between 2002-2008 were analyzed to demonstrate the utility of regulatory data across three sites located within 100 km of each other. Trends in concentrations, source contribution, and incremental excesses across three sites were investigated using the Positive Matrix Factorization model. Similar yearly trends in chemical composition were observed across all sites, however, excesses of organic matter and elemental carbon were observed in the urban center that originated from local emissions of mobile sources and biomass buming. Secondary sulfate and secondary nitrate constituted over half of the PM2.5 with no spatial differences observed across sites. For these components, the excess of emissions from industrial sources could be directly quantified. This study demonstrates that CSN data from multiple sites can be successfully used to derive consistent source profiles and source contributions for regional pollution, and that CSN data can be used to quantify incremental differences in source contributions of across these sites. The analysis strategy can be used in other regions of the world to take advantage of existing ambient particulate matter monitoring data to better the understanding of spatial differences in source contributions within a given air shed.  相似文献   

6.
PM10 airborne particles and soot deposit collected after a fire incident at a chemical store were analyzed in order to determine the concentrations of polycyclic aromatic hydrocarbons(PAHs). The samples were extracted with 1 : 1 hexane-dichloromethane by ultrasonic agitation. The extracts were then subjected to gas chromatography-mass spectrometric(GC-MS) analysis. The total PAHs concentrations in airborne particles and soot deposit were found to be 3.27 1.55 ng/m^3 and 12.81 24.37 μg/g, respectively. Based on the molecular distributions of PAHs and the interpretation of their diagnostic ratios such as PHEN/(PHEN ANTH), FLT/(FLT PYR) and BeP/(BeP BaP), PAHs in both airborne particles and soot deposit may be inferred to be from the same source. The difference in the value of IP/(IP BgP) for these samples indicated that benzo[ g, h, i] perylene and coronene tend to be attached to finer particles and reside in the air for longer periods. Comparison between the molecular distributions of PAHs and their diagnostic ratios observed in the current study with those reported for urban atmospheric and roadside soil particles revealed that they are of different sources.  相似文献   

7.
Potassium silicate drilling fluids(PSDF) are a waste product of the oil and gas industry with potential for use in land reclamation. Few studies have examined the influence of PSDF on abundance and composition of soil bacteria and fungi. Soils from three representative locations for PSDF application in Alberta, Canada, with clay loam, loam and sand textures were studied with applications of unused, used once and used twice PSDF. For all three soils, applying ≥ 40 m3/ha of used PSDF significantly affected the existing soil microbial flora. No microbiota was detected in unused PSDF without soil. Adding used PSDF to soil significantly increased total fungal and aerobic bacterial colony forming units in dilution plate counts, and anaerobic denitrifying bacteria numbers in serial growth experiments.Used PSDF altered bacterial and fungal colony forming unit ratios of all three soils.  相似文献   

8.
Nitrobenzene was reported to occur at relatively high concentrations in some Chinese surface water and to cause an environmental pollution event in 2005.To map the distribution of nitrobenzene in the Chinese surface water throughout China,surface water samples were collected from over 600 sites in the 7 major watersheds and three drainage areas.The samples were analyzed for concentration of nitrobenzene.Overall,nitrobenzene was more frequently detected at higher concentrations in the rivers of North Chin...  相似文献   

9.
The goal of the work was to investigate the concentrations of the 16 US EPA priority polycyclic aromatic hydrocarbons(PAH) bound to submicrometer particles(particulate matter, PM_1) suspended in the air of university teaching rooms and in the atmospheric air outside. Two teaching rooms were selected in two Polish cities, Gliwice, southern Poland,and Warsaw, central Poland, differing with regard to the ambient concentrations and major sources of PM and PAH. The variabilities of indoor and outdoor 24-hr concentrations of PM_1-bound PAH, the ratio(I/O) of the indoor to outdoor 24-hr concentrations of PM_1-bound PAH, probable sources of PAH and the level of the hazard from the mixture of the 16 PAH(ΣPAH) to humans at both sites were analyzed. In both Warsaw and Gliwice, the mean concentrations of PM_1-bound ΣPAH were slightly higher in the atmospheric air than in the rooms. The indoor and outdoor concentrations of individual PAH in Gliwice were correlated,in Warsaw – they were not. Most probably, the lack of the correlations in Warsaw was due to the existence of an unidentified indoor source of gaseous PAH enriching PM_1 in phenanthrene, fluorene, and pyrene. Although the ambient concentrations of PM_1-bound PAH were low compared to the ones observed earlier at both sites, they were much higher than in other urbanized European areas. However, because of low mass share of heavy PAH in ΣPAH, the various indicators of the health hazard from the 16 PAH mixture were low compared to other regions.  相似文献   

10.
The solubility and sorption of oil by uncontaminated clay loam and silt loam soils were studied from water and cosolvent/water solutions using batch techniques. The data obtained from the dissolution and sorption experiments were used to evaluate the applicability of the cosolvent theory to oil as a complex mixture. Aqueous solubility and soil-water distribution coeffcients (Kd,w, L/kg) were estimated by extrapolating from cosolvent data, with a log-linear cosolvency model, to the volume fraction of cosolve...  相似文献   

11.
Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an e cient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65–4.7 m. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm’s titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an e ective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an e ective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.  相似文献   

12.
In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter(PM) and the source samples were collected in Zhuzhou, Hunan Province from December 2011 to January 2012 and the results were discussed and interpreted. Atmospheric particles were collected with different sizes by a cascade impactor. The concentrations of heavy metals in atmospheric particles of different sizes, collected from the air and from factories, were measured using an inductively coupled plasma mass spectrometry(ICP-MS). The results indicated that the average concentration of PM, chromium(Cr), arsenic(As), cadmium(Cd) and lead(Pb) in PM was177.3 ± 33.2 μg/m~3, 37.3 ± 8.8 ng/m~3, 17.3 ± 8.1 ng/m~3, 4.8 ± 3.1 ng/m~3 and 141.6 ± 49.1 ng/m~3,respectively. The size distribution of PM displayed a bimodal distribution; the maximum PM size distribution was at 1.1–2.1 μm, followed by 9–10 μm. The size distribution of As, Cd and Pb in PM was similar to the distribution of the PM mass, with peaks observed at the range of1.1–2.1 μm and 9–10 μm ranges while for Cr, only a single-mode at 4.7–5.8 μm was observed. PM(64.7%), As(72.5%), Cd(72.2%) and Pb(75.8%) were associated with the fine mode below 2.1 μm,respectively, while Cr(46.6%) was associated with the coarse mode. The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and zinc smelting sources.  相似文献   

13.
This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.  相似文献   

14.
Trace metals in PM2.5were measured at one industrial site and one urban site during September, 2010 in Ji'nan, eastern China. Individual aerosol particles and PM2.5samples were collected concurrently at both sites. Mass concentrations of eleven trace metals(i.e., Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ba, and Pb) and one metalloid(i.e., As) were measured by inductively coupled plasma atomic emission spectroscopy(ICP-AES). The result shows that mass concentrations of PM2.5(130 μg/m3) and trace metals(4.03 μg/m3) at the industrial site were 1.3 times and 1.7 times higher than those at the urban site, respectively, indicating that industrial activities nearby the city can emit trace metals into the surrounding atmosphere. Fe concentrations were the highest among all the measured trace metals at both sites, with concentrations of 1.04 μg/m3at the urban site and 2.41 μg/m3at the industrial site, respectively. In addition, Pb showed the highest enrichment factors at both sites, suggesting the emissions from anthropogenic activities existed around the city. Correlation coefcient analysis and principal component analysis revealed that Cu, Fe, Mn, Pb, and Zn were originated from vehicular trafc and industrial emissions at both sites; As, Cr, and part of Pb from coal-fired power plant; Ba and Ti from natural soil. Based on the transmission electron microscopy analysis, we found that most of the trace metals were internally mixed with secondary sulfate/organic particles. These internally mixed trace metals in the urban air may have diferent toxic abilities compared with externally mixed trace metals.  相似文献   

15.
Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols’ sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.  相似文献   

16.
Tunnel displays a typical semi-closed environment, and multitudes of the pollutants tend to accumulate. The samples of gaseous pollutants and particulate matter(PM) were collected from the Xiangyin tunnel at Shanghai to investigate the characteristics of the pollutant emissions. The results indicated that both gaseous pollutants and PM exhibited much higher concentrations during the rush hours in the morning and at night due to vehicle emission. Two peaks of the PM concentration were observed in the scope of 0.7‐1.1 and 3.3–4.7 μm, accounting for 14.6% and 20.3% of the total concentrations, respectively.Organic matter(OM), EC, and many water-soluble ions were markedly higher at the rush hours in the morning than those at night, implicating comprehensive effects of vehicle types and traffic volume. The particle number concentrations exhibited two peaks at Aitken mode(25 nm and 100 nm) and accumulation mode(600 nm), while the particle volume concentration displayed high values at the accumulation mode(100–500 nm) and coarse mode(2.5–4.0 μm). The peak around 100 nm was detected in the morning rush hours, but it diminished with the decrease of the traffic volume. Individual-particle analysis revealed that main particles in the tunnel were Fe-rich particles, K-rich particles, mineral particles,Ca–S rich particles and Al–Si particles. The particles collected at the rush hours displayed marked different morphologies, element concentrations and particle sizes compared to the ones collected at the non-rush period. The data presented herein could shed a light on the feature of vehicle emissions.  相似文献   

17.
During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of “OC/EC minimum ratio” was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 g/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.  相似文献   

18.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

19.
Landfill sites are regarded as prominent sources of bioaerosols for the surrounding atmosphere. The present study focused on the emission of airborne bacteria and fungi in four seasons of a sanitary landfill site. The main species found in bioaerosols were assayed using high-throughput sequencing. The SourceTracker method was utilized to identify the sources of the bioaerosols present at the boundary of the landfill site. Furthermore, the health consequences of the exposure to bioaerosols were evaluated based on the average daily dose rates. Results showed that the concentrations of airborne bacteria in the operation area (OPA) and the leakage treatment area (LTA) were in the range of (4684 ± 477)–(10883 ± 1395) CFU/m3 and (3179 ± 453)–(9051 ± 738) CFU/m3, respectively. The average emission levels of fungal aerosols were 4026 CFU/m3 for OPA and 1295 CFU/m3 for LTA. The landfill site received the maximum bioaerosol load during summer and the minimum during winter. Approximately 41.39%– 86.24% of the airborne bacteria had a particle size of 1.1 to 4.7 µm, whereas 48.27%– 66.45% of the airborne fungi had a particle size of more than 4.7 µm. Bacillus sp., Brevibacillus sp., and Paenibacillus sp. were abundant in the bacterial population, whereas Penicillium sp. and Aspergillus sp. dominated the fungal population. Bioaerosols released from the working area and treatment of leachate were the two main sources that emerged in the surrounding air of the landfill site boundary. The exposure risks during summer and autumn were higher than those in spring and winter.  相似文献   

20.
We investigated the epilithic diatom assemblage of samples collected from three sites of the Hakata River, Fukuoka, Japan, on November 26, 2008. Each taxon was photographed and identified. The 1747 diatom frustules collected were classified into 33 taxa belonging to 17 genera. Nitzschia fonticola was abundant at all sites. The DAIpo (the diatom assemblage index to organic water pollution) values for sites 1, 2, and 3 were 50.2, 44.1 and 48.0, respectively, indicating that the water quality of the Hakata River was at β-mesosaprobic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号