首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
水热法制备玉米叶基生物炭对亚甲基蓝的吸附性能研究   总被引:7,自引:0,他引:7  
以农业废弃物玉米叶和玉米秆为原材料,采用水热法制备生物炭,通过批试验方法考察了接触时间、污染物初始浓度、生物炭投加量、反应体系温度及溶液p H值等因素对2种生物炭吸附亚甲基蓝的影响,并对吸附规律进行了探讨.吸附动力学拟合结果发现,准二级动力学能更好地拟合吸附过程(R~2=0.9986~0.9999);颗粒内扩散方程拟合结果表明,2种生物炭对亚甲基蓝的吸附由液膜扩散和颗粒内扩散2个过程控制.玉米叶基生物炭对亚甲基蓝的吸附可以通过Freundlich方程来进行拟合(R~2=0.9898),说明吸附在生物炭表面是多分子层吸附过程;而玉米杆基生物炭对亚甲基蓝的吸附更符合Langmuir方程(R~2=0.9825),说明吸附在生物炭表面是单分子层吸附过程.与玉米杆基生物炭相比,玉米叶基生物炭具有更好的吸附性能,拟合理论最大吸附量为玉米杆基生物炭的1.25倍.  相似文献   

2.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

3.
《环境保护科学》2015,(6):50-53
选用木质、果壳、椰壳和煤质4种不同材质的活性炭,经过HNO_3酸化和Na OH碱化,选出对苯酚和亚甲蓝吸附效果最好的活性炭,并进行最佳投加量,最佳pH值和最佳吸附时间的研究。结果表明:碱化木质炭比表面积大、孔隙发达,吸附效果最好。对于初始浓度为1 g/L的苯酚和亚甲基蓝溶液,最佳投加量分别为1.5 g和0.5 g。当pH10时,碱化木质炭对苯酚有较高的去除率,pH值对亚甲基蓝影响不大,在强酸,中性及碱性溶液中吸附效果更佳。碱化木质炭对苯酚的吸附速度高,在极短时间内去除率高达到88%。当亚甲基蓝的吸附时间在20 min之后,碱化木质炭对亚甲基蓝的吸附趋于平衡,去除率达90%。  相似文献   

4.
为了解生物炭对水中Cr(Ⅵ)的吸附效果,本文选用蔬菜废物豆角秸秆为原材料,采用限氧升温法在400℃和700℃温度下制备了两种生物炭。并研究了投加量、初始浓度、pH值、吸附时间、温度等因素对生物炭吸附Cr(Ⅵ)的影响。研究结果表明,2种豆角秸秆生物炭对水中Cr(Ⅵ)均有较好的吸附率,吸附最佳条件略有不同;D400对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于40mg·L^-1,pH值2—3;D700对水中Cr(Ⅵ)的最佳吸附条件为投加量8g/L,初始浓度小于60mg·L^-1,pH值2—4;基本达到吸附平衡的时间均为60min;温度对生物炭吸附Cr(Ⅵ)的影响很小。  相似文献   

5.
以戊二醛为交联剂,Fe3O4为磁核制备磁性壳聚糖,探究了其去除废水中亚甲基蓝的性能,以及吸附动力学、吸附等温线、吸附热力学特征.结果表明,在磁性壳聚糖投加量为0.5g/L、pH=10、反应时间为60min的条件下,对亚甲基蓝的去除率和吸附容量分别达到97.6%和39.0mg/g,远高于天然壳聚糖的59.8%和23.9mg/g.磁性壳聚糖对亚甲基蓝的吸附过程符合准二级反应动力学方程(R2=0.99902)和Langmuir等温线方程(R2=0.99961),吸附过程是热力学自发过程,吸附反应是放热反应.  相似文献   

6.
郭俊元  陈诚  张萍  何山 《环境科学学报》2018,38(4):1529-1536
采用戊二醛交联FeCl_3制备改性壳聚糖吸附处理染料废水,以20 mg·L~(-1)的亚甲基蓝溶液作为处理对象,探究氯化铁改性壳聚糖(FeCl_3-CTS)投加量、废水p H值、反应时间对其处理亚甲基蓝废水性能的影响,并对吸附动力学、吸附等温线过程进行拟合.结果表明,FeCl_3-CTS对亚甲基蓝废水的处理效果远高于未改性壳聚糖(N-CTS),尤其是在投加量为0.1 g·L~(-1)、p H=6的条件下,经FeCl_3-CTS处理50 min后,亚甲基蓝废水的脱色率高达99.4%,FeCl_3-CTS对亚甲基蓝的吸附容量高达198.8 mg·g~(-1),与N-CTS的54.8%和109.6 mg·g~(-1)相比,均有显著的提高.吸附动力学、吸附等温线拟合结果显示,FeCl_3-CTS对亚甲基蓝废水的吸附过程符合准二级反应动力学方程(R2=0.9992)和Langmuir等温线方程(R~2=0.9995).  相似文献   

7.
以山羊粪便为原料,在300℃和700℃缺氧热解条件下制备生物炭,分别记为D300和D700。使用扫描电镜表征生物炭结构特征,运用比表面积仪测定其比表面积和孔径大小,以此探究不同热解温度条件下羊粪生物炭的内部结构及比表面积特征。以水体氨氮(20 mol/L)为目标污染物,以D300和D700为吸附剂,研究不同氨氮浓度、温度、pH以及吸附剂投加量等因素对水体氨氮吸附的影响以及吸附特性。结果表明:热解温度从300℃上升到700℃,生物炭的比表面积、总孔容随之增大,平均孔径反之减小,吸附效率从15.72%提升到24.73%。羊粪生物炭吸附水体氨氮的最佳pH在6~8;通过对动力学数据进行分析,发现准二级动力学方程(R~2=0.999 1)比准一级动力学方程(R~2=0.663 3)能更好地拟合动力学数据。吸附等温曲线拟合发现Langmuir方程(R~2=0.842 74)能更好地描述氨氮在羊粪生物炭上的吸附行为。吉布斯自由能变化、焓变和熵变的计算结果表明:羊粪生物炭对氨氮的吸附过程是自发的吸热过程。700℃条件下制备的羊粪生物炭比D300拥有更好的吸附性能。  相似文献   

8.
本研究以榕树树叶为吸附剂,考察了在投加量、p H、温度、吸附时间不同因素下对亚甲基蓝去除率的影响。建立正交实验,结果表明榕树树叶粉末吸附亚甲基蓝的最佳条件是当初始浓度为100mg/L,投加量为0.5g、p H为8、温度为35℃、吸附时间为75min时,去除率最高,达到99.05%。吸附动力学过程可用准一级反应动力学方程来描述,等温吸附过程可由Freundlich吸附等温式来描述,榕树树叶粉末对亚甲基蓝的吸附过程是一个吸热过程。实验证明榕树叶是一种具有潜力的亚甲基蓝吸附剂。  相似文献   

9.
比较了松木生物炭(PN-B)、花生壳生物炭(PT-B)及膨润土(Bent)对镉的吸附能力及机理,模拟其吸附等温模型和吸附动力学,并讨论p H、初始投加量对实验的影响,对吸附前后的吸附剂进行电镜扫描、傅里叶红外光谱及X射线衍射分析,探讨其吸附机理。结果表明:2种生物炭和膨润土对Cd~(2+)的吸附都符合Freundlich模型; 3种材料吸附动力学均符合标准二级反应动力学方程;其中pH=6、投加量为0. 1g时吸附效果最高,PN-B、Bent、PT-B最大吸附量及最大吸附率分别为16. 56 mg/g(95%)、15. 07 mg/g(91. 06%)、15. 52 mg/g(89. 4%);生物炭对Cd~(2+)的吸附机理主要为—OH、—C O及—CH_2与Cd~(2+)发生表面吸附、离子交换和络合反应共同作用,膨润土对Cd~(2+)的吸附机理主要为离子交换反应。研究表明,松木生物炭对镉的吸附效果最好。  相似文献   

10.
核桃青皮生物炭对重金属铅、铜的吸附特性研究   总被引:28,自引:5,他引:23  
采用500℃限氧裂解法将农林废弃物核桃青皮制成核桃青皮生物炭,进行了核桃青皮生物炭对铅、铜的批量吸附实验.同时,利用扫描电镜、FTIR红外等方法探讨了核桃青皮炭吸附Pb~(2+)、Cu~(2+)的特性,探究了吸附时间、溶液初始浓度、吸附温度、吸附剂投加量、溶液初始pH等因素对核桃青皮生物炭吸附Pb~(2+)、Cu~(2+)作用的影响,讨论了吸附动力学特性及吸附等温特性.结果表明:温度298.15 K、pH为3~6条件下,核桃青皮生物炭吸附Pb~(2+)和Cu~(2+)在20 min内即可达到吸附平衡,核桃青皮炭最佳投加量分别为0.8、1.5 g·L~(-1),最大吸附量分别为476.190、153.846 mg·g~(-1);吸附过程符合准二级动力学方程,等温吸附曲线符合Langmuir方程,说明其吸附过程主要是近似单分子层的化学吸附.  相似文献   

11.
牛粪生物炭对磷的吸附特性及其影响因素研究   总被引:9,自引:0,他引:9  
以牛粪生物炭为吸附剂,采用平衡吸附法研究了牛粪生物炭对磷的吸附特征.研究了pH值、共存离子、反应温度、投加量、热解温度等对牛粪生物炭吸附磷的影响.结果表明,牛粪生物炭吸附磷的最佳初始pH值为7.0;共存离子的存在对生物炭吸附磷的影响有限;反应温度升高不利于磷的吸附;当投加量为0.1g时,对磷的去除率较为理想;热解温度升高不利于对磷的吸附.通过对实验数据进行动力学、吸附等温线及热力学分析,发现牛粪生物炭对磷的吸附动力学数据符合拟二级吸附动力学方程,Langmuir-Freundlich(R2=0.9705)和Temkin(R2=0.9556)方程能很好地描述磷在牛粪生物炭上的吸附行为.热力学分析结果显示25,35,45℃下的吉布斯自由能变化(ΔG0)分别为-17.43,-15.98,-15.89kJ/mol,表明牛粪生物炭对磷的吸附是自发的过程.  相似文献   

12.
巫林  刘颖  李燕  沈飞  杨刚  伍钧 《环境科学研究》2016,29(10):1537-1545
为寻求高效、廉价的E2(雌二醇激素)吸附剂及开拓蚯蚓粪便的资源化利用途径,将蚯蚓粪便在300、500和700 ℃下热解碳化制备生物炭(分别记为BC300、BC500和BC700),对所得生物炭的基本理化性质(包括物质组成、表面官能团、孔隙结构等)进行分析,并将其用于吸附水体中E2,考察生物炭投加量、溶液pH、反应时间及初始ρ(E2)对生物炭吸附性能的影响,并探讨了吸附机理.结果表明:随热解温度的升高,生物炭的H/C(原子比)由0.13降至0.03,O/C(原子比)由0.46降至0.02,芳香性增强,极性降低,逐渐由脂肪炭结构过渡到芳香炭结构;生物炭比表面积由24.33 m2/g增至76.29 m2/g,总孔体积由0.09 cm3/g增至0.19 cm3/g.不同热解温度下制备的生物炭对E2的吸附过程均符合准二级动力学方程,拟合系数大于0.991;Langmuir和Freundlich等温吸附模型均能较好地描述蚯蚓粪便生物炭对E2的吸附过程,Langmuir理论最大吸附量表现为BC700(7.66 mg/g)>BC500(5.23 mg/g)>BC300(3.32 mg/g).随热解温度的升高,O/C和H/C降低,说明碳化程度增强,生物炭吸附E2的分配作用减弱而表面吸附作用增强.研究显示,蚯蚓粪便生物炭对E2的吸附效果随比表面积和孔体积的增加而增强.   相似文献   

13.
水体中磷的去除对控制水体富营养化具有非常重要的意义。本研究通过以固体废弃物煤矸石和秸秆为原料,制成生物炭复合材料并应用于水溶液中磷酸根的吸附。利用SEM、Zeta电位测量等分析手段对其理化性质进行表征,并对不同的影响因素进行了分析研究以确定最佳的吸附条件。在此基础上,采用不同吸附动力学和吸附等温模型对生物炭的吸附行为和机理进行了研究。结果表明,用煤矸石改性秸秆类生物炭,使生物炭性质都发生改变,比表面积、Zeta电位、电导率、产率及吸附量都显著增加,吸附条件筛选时得到700℃生物炭单位吸附量高于450℃生物炭,改性生物炭单位吸附量高于原始生物炭,油菜生物炭单位吸附量大于水稻生物炭,酸性条件下单位吸附量与溶液pH值呈负相关,因此选择改性油菜生物炭在700℃热解,采用2.5 g/L投加量吸附pH为4的溶液中磷酸根的吸附条件效果最好,单位吸附量为7.08 mg/g,吸附过程符合准二级吸附动力学模型和Langmuir吸附模型,此吸附过程以化学吸附为主,属单分子层有利吸附。本研究开发了一种利用固体废弃物制备新型生物炭基复合材料的方法,该材料具有成本低廉、操作简单、效果显著的特点。  相似文献   

14.
该文利用NaOH改性后的头发进行亚甲基蓝(MB)吸附研究。通过扫描电子显微镜和红外光谱对头发和改性头发的性能进行表征,并探讨了初始pH、吸附剂投加量、初始染料浓度和反应时间对吸附效果的影响。结果表明,NaOH改性头发可以氧化表层胱氨酸中的二硫键,使其表面荷负电,提高MB的去除率。当吸附剂投加量为0.5 g/L、初始pH为10.0、温度为298 K时,反应在120 min内达到平衡,符合准二级动力学模型。通过Langmuir等温吸附模型得到改性头发的最大吸附量为515.46 mg/g。该吸附剂制备方法简单,再生能力强,对于MB染料废水去除有良好的应用前景。  相似文献   

15.
为在高纬度地区秋季温度条件下研究一种高效以及低值的技术去移除人工湿地中的硝酸盐氮,在秋季人工湿地中收集水生植物枯落物芦苇以及香蒲制备生物炭,并利用盐酸进行改性.通过序批实验,研究了改性水生植物生物炭对硝酸盐氮的吸附性能及影响因素,探讨了其吸附机理.结果表明,经盐酸改性的芦苇生物炭MRB与香蒲生物炭MCB表面均带正电荷,Zeta电位分别为+5.46mV与+2.31mV.MRB与MCB对硝酸盐氮吸附行为更符合准二级动力学方程(R~20.99),等温吸附曲线更好拟合Freundlich方程(R~20.98).MRB及MCB对硝酸根的最大吸附量Q_m分别为14.6661mg/g与5.5559mg/g.批量吸附实验也表明,溶液初始pH和共存阴离子会影响改性水生植物生物炭吸附硝酸盐.改性水生植物生物炭可以有效地去除来自于在秋季高纬度地区人工湿地污水中的硝酸盐.  相似文献   

16.
羊粪生物炭对水体中诺氟沙星的吸附特性   总被引:3,自引:0,他引:3  
以羊粪为原料分别在350、450、550、650℃条件下制备生物炭,通过元素分析、BET-N_2、电镜扫描及FTIR表征了不同热解温度下羊粪生物炭的结构特征,并采用序批实验研究了pH、生物炭投加量、热解温度、初始浓度等因素对羊粪生物炭吸附水体中诺氟沙星(NOR)的影响及吸附机制.结果表明,随着热解温度的升高,生物炭的比表面积、总孔容、平均孔径增大,芳香性和稳定性也有所提高.羊粪生物炭吸附NOR的最佳初始pH为6.0,吸附在180 min左右达到平衡,采用准二级动力学模型能更好地拟合动力学数据(R~20.96),吸附速率由表面吸附和颗粒内扩散共同控制.等温吸附拟合发现,Langmuir模型能较好地描述NOR在羊粪生物炭上的吸附行为(R~20.93),吸附过程均为有利吸附,且可能与氢键和π-π键作用密切相关,4种热解温度下生物炭的吸附能力大小为:650℃550℃450℃350℃.吸附过程中ΔGθ0、ΔHθ0、ΔSθ0,表明羊粪生物炭对NOR的吸附是自发、吸热及熵增加的过程.650℃和550℃条件下制备的羊粪生物炭可作为水体中NOR的优势吸附材料.  相似文献   

17.
茶渣生物炭制备及其对溶液中四环素的去除特性   总被引:9,自引:6,他引:3  
以茶渣(tea waste)为对象,在300、 500和700℃限氧条件下热解制备成生物炭(TWBC300、 TWBC500和TWBC700),研究其对溶液中四环素(tetracycline,TC)的去除特性.采用元素分析、比表面积分析仪、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)对TWBC300、 TWBC500及TWBC700进行表征;考察生物炭添加量、溶液初始pH、离子类型及强度等因素对四环素去除效果的影响;结合吸附动力学、吸附等温线和仪器表征结果探究生物炭对溶液中四环素的作用机制.结果表明,适合的生物炭投加量为4.0g·L~(-1).溶液初始pH对生物炭去除四环素的影响较小.溶液中阳离子类型对生物炭吸附四环素的抑制作用依次是Mg~(2+)Ca~(2+)K~+Na~+.NH~+_4能略微促进生物炭对四环素的吸附,而铜离子却显著抑制生物炭对四环素的去除.环境温度增加能提升生物炭对四环素的去除效果.拟二级动力学方程和Langmuir模型可以较好地拟合茶渣生物炭吸附四环素的过程.茶渣生物炭对四环素的吸附量依次是TWBC700TWBC500TWBC300.孔隙扩散、氢键和π-π作用是茶渣生物炭去除四环素的主要机制.因此,高温制备的茶渣生物炭可作为废水中四环素去除的良好吸附剂.  相似文献   

18.
以改性沸石/羟基氧化铁复合材料作为吸附剂,通过静态吸附实验,研究了不同因素影响下复合材料对废水中亚甲基蓝的吸附性能.研究结果表明:改性沸石/羟基氧化铁复合材料对亚甲基蓝有很好的去除效果,当废水pH值为13.0,吸附平衡时间为20min时,向电解质(NaNO3)浓度为0.01mol/L的含亚甲基蓝50mg/L的废水中投加5g/L改性沸石/羟基氧化铁复合材料,亚甲基蓝去除率达到94.65%.Langmuir型方程比Freundlich型方程对等温吸附实验数据拟合效果更好,D-R方程分析表明,该吸附以物理吸附为主.分别用拟一级、拟二级动力学方程和颗粒内扩散模型对吸附动力学过程进行拟合.结果表明,拟二级动力学方程对实验数据拟合效果较好,扩散过程以膜扩散为主.  相似文献   

19.
探讨污泥在乙醇-水混合溶剂中液化产生的生物炭的吸附潜力及其吸附机理(以亚甲基蓝(MB)废水为处理对象),结果表明:生物炭的吸附容量随着MB溶液起始pH值升高而升高,当pH超过8时,MB的碱性褪色开始显现.吸附温度的上升(30~60℃)对生物炭吸附容量的影响不明显.吸附容量总体上随着吸附时间的增加而上升(240min前),在240min后趋于稳定.吸附剂用量及初始MB浓度过高或过低都不利于生物炭的吸附,存在一个的临界点,分别是6mg和120mg/L.生物炭吸附MB的过程吻合准二级动力学方程(R2=0.9994)和Langmuir方程(R2=0.9831),且为自发吸热的过程,受物理吸附和化学吸附联合控制,具体的机理包括:离子交换、官能团络合、π-π吸附等.  相似文献   

20.
利用制药污泥热解制备生物炭,考察ZnCl2活化条件对生物炭吸附性能的影响,并探究生物炭对制药废水的吸附处理特性。提高ZnCl2活化剂的浓度和浸渍比均可提升制药污泥生物炭的吸附性能,5 mol/L ZnCl2活化剂在1:1浸渍比下获得的生物炭的比表面积达到534.91 m2/g,碘吸附值和苯酚吸附值分别达到674.61,119.12 mg/g。制药污泥生物炭对制药废水COD吸附动力学与叶洛维奇模型和拟二级吸附动力学模型较为相符,1 h内为生物炭对COD的快速吸附阶段。制药污泥生物炭投加量的提升,可提高废水中污染物去除率,在50 g/L生物炭投加量下吸附1 h,可实现66.3% COD和61.8%可吸附有机卤素(AOX)的去除。而多级吸附可在较低投加量下实现更好的污染物去除效果,1 g/L投加量下进行6级吸附可去除72.8%的COD和65.2%的AOX。这揭示了制药污泥在ZnCl2活化条件下热解可制备高吸附性能生物炭,并展现了出色的制药废水吸附处理效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号