首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Trio exome sequencing was performed on a fetus presenting with severe hydrops fetalis at 21 + 0 weeks gestation. A novel de novo BICD2 missense variant was identified in the fetus. Pathogenic variants in the BICD2 gene are associated with lower extremity-predominant spinal muscular atrophy. The variant was initially classified as a variant of uncertain clinical significance (VUS) as at the time of analysis and initial report, pathogenic variants in the BICD2 gene specifically had not been associated with fetal hydrops and no other abnormalities had been detected. It was agreed in multidisciplinary team discussions to include the variant in the report as a VUS recommending phenotypic follow-up. The pregnancy was terminated and post-mortem findings were in keeping with a BICD2-pathogenic variant. In addition, a paper was published reporting another case with a pathogenic BICD2 variant presenting with fetal hydrops. The variant classification was then upgraded to class 4 likely pathogenic and reported as consistent with the diagnosis. This case demonstrates the importance of reporting these new gene/phenotypes in enabling others in the classification of variants, staying up-to-date with literature and following up phenotype for class 3 variants of interest.  相似文献   

2.
We report a case of pyruvate dehydrogenase E1 alpha subunit deficiency associated with a novel hemizygous PDHA1 variant presenting prenatally as multiple structural brain abnormalities in a male fetus. A healthy Finnish couple was initially referred to the Fetomaternal Medical Center because of suspected fetal choroid plexus cyst at 11 + 2 weeks of pregnancy. At 20 + 0 weeks, multiple abnormalities were observed with ultrasound including narrow thorax, slightly enlarged heart, hypoplastic cerebellum, absent cerebellar vermis and ventriculomegaly. Autopsy and genetic analyses were performed after the termination of pregnancy. The findings of macroscopic examination included cleft palate, abnormally overlapping position of fingers and toes and dysmorphic facial features. Neuropathological examination confirmed the absence of corpus callosum, cerebellar hypoplasia and ventriculomegaly. Nodular neuronal heterotopia was also observed. Trio exome sequencing revealed a novel hemizygous de novo variant c.1144C>T p.(Gln382*) in the PDHA1 gene, classified as likely pathogenic. We suggest that inherited metabolic disorders should be kept in mind as differential diagnoses in fetuses with structural brain abnormalities.  相似文献   

3.
Prenatal testing was performed in a 39-year-old Chinese pregnant woman referred for increased nuchal translucency measuring 5.7 mm. Non-invasive prenatal testing and SNP array study on amniotic fluid samples were normal. Whole exome sequencing (WES) was initiated further as the fetus had pericardial effusion of 1.2 mm, thickened myocardium over the right ventricular lateral wall and aberrant right subclavian artery. A detailed fetal echocardiogram also revealed persistent left superior vena cava and dilated coronary sinus at 20 weeks. From whole exome sequencing of the trio, a de novo heterozygous variant NM_005359.5(SMAD4): c.1499T>C (p.Ile500Thr) was detected. This pathogenic variant has been reported in the postnatal case cohort of Myhre syndrome. This condition is characterized by facial dysmorphism, intellectual disability, hearing loss, skeletal abnormalities and potential life threatening respiratory or cardiovascular manifestations. Termination of pregnancy was performed at 23 weeks. Small chins, pre-axial polydactyly, brachydactyly and clinodactyly were noted in the abortus. Ultrasound findings of increased nuchal translucency, thickened myocardium and pericardial effusion prompted further genetic evaluation for the prenatal diagnosis of Myhre syndrome by whole exome sequencing.  相似文献   

4.
We describe two fetuses from unrelated families with likely pathogenic variants in ITPR1 that presented with nonimmune fetal hydrops. Trio exome sequencing revealed a de novo heterozygous likely pathogenic missense variant c.7636G > A (p.Val2531Met) in ITPR1 (NM_001378452.1) in proband 1 and a de novo heterozygous likely pathogenic missense variant c.34G > A [p.Gly12Arg] in proband 2. Variants in ITPR1 have been associated with several genetic conditions, including spinocerebellar ataxia 15, spinocerebellar ataxia 29, and Gillespie syndrome. Our report on two patients details a previously undescribed severe fetal presentation of nonimmune hydrops fetalis associated with missense variants in the ITPR1 gene.  相似文献   

5.
Duo exome testing was performed on a fetus conceived via in vitro fertilization with an egg donor. The fetus presented with non-immune hydrops fetalis (NIHF) at 20 + 0 weeks gestation. Two variants were detected in the GUSB gene. Biallelic pathogenic variants cause mucopolysaccharidosis type VII (MPS-VII), which can present with NIHF prenatally. At the time of analysis and initial report, one variant was classified as likely pathogenic and the other as of uncertain clinical significance. Biochemical testing of the amniotic fluid supernatant showed elevated glycosaminoglycans and low β-glucuronidase activity consistent with the diagnosis of MPS-VII. This evidence allowed the upgrade of the pathogenicity for both variants, confirming the diagnosis of MPS-VII. The infant was born at 36 + 5 weeks and enzyme replacement therapy (ERT) using vestronidase was initiated at 20 days with planning for hematopoietic stem cell transplant ongoing. The ERT therapy has been well tolerated, with decreasing quantitative urine glycosaminoglycans. Long-term follow up is required to determine whether treatment has been successful. This case demonstrates the utility of alternative testing methods to clarify the pathogenicity of variants and the clinical utility of obtaining a diagnosis antenatally in facilitating treatment in the neonatal period, and specifically highlights MPS-VII as a treatable cause of NIHF.  相似文献   

6.

Objective

This study aimed to assess the diagnostic yield of prenatal genetic testing using trio whole exome sequencing (WES) and trio whole genome sequencing (WGS) in pregnancies with fetal anomalies by comparing the results with conventional chromosomal microarray (CMA) analysis.

Methods

A total of 40 pregnancies with fetal anomalies or increased nuchal translucency (NT ≥ 5 mm) were included between the 12th and 21st week of gestation. Trio WES/WGS and CMA were performed in all cases.

Results

The trio WES/WGS analysis increased the diagnostic yield by 25% in cases with negative CMA results. Furthermore, all six chromosomal aberrations identified by CMA were independently detected by WES/WGS analysis. In total, 16 out of 40 cases obtained a genetic sequence variant, copy number variant, or aneuploidy explaining the phenotype, resulting in an overall WES/WGS diagnostic yield of 40%. WES analysis provided a more reliable identification of mosaic sequence variants than WGS because of its higher sequencing depth.

Conclusions

Prenatal WES/WGS proved to be powerful diagnostic tools for fetal anomalies, surpassing the diagnostic yield of CMA. They have the potential to serve as standalone methods for prenatal diagnosis. The study highlighted the limitations of WGS in accurately detecting mosaic variants, which is particularly relevant when analyzing chorionic villus samples.  相似文献   

7.
Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis. © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Germline pathogenic variants in isocitrate dehydrogenase 1 (IDH1) can lead to a rare neurodevelopmental disorder called metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria, including severe skeletal and cerebral anomalies. To the best of our knowledge, no prenatal case of an IDH1 pathogenic variant has been reported in literature. Somatic sequence variants in IDH1/2 genes are described in distinct cancers, premalignant diseases and rare inherited metabolic disorders. Amniocentesis and further genetic testing including trio exome sequencing were performed due to suspicious findings on a second trimester routine prenatal ultrasound examination. The fetus was found to have growth restriction, cerebral abnormalities (ex vacuo hydrocephalus, cerebellar and vermian hypoplasia, corpus callosum dysgenesis), brachycephaly, narrow chest, persistent left superior vena cava, liver calcifications, hyperechogenic bowel, short tubular bones and joint contractures. A de novo heterozygous variant in the IDH1 gene was detected via trio exome sequencing. The prenatal diagnosis of a de novo pathogenic variant in IDH1 in a fetus with the described phenotype, obtained through trio exome sequencing, helped parents and providers with an informed decision making about pregnancy management.  相似文献   

9.
10.

Objective

In this retrospective study, we describe the clinical course, ultrasound findings and genetic investigations of fetuses affected by fetal akinesia.

Materials and Methods

We enrolled 22 eukaryotic fetuses of 18 families, diagnosed with fetal akinesia between 2008 and 2016 at the Department of Obstetrics and Feto-Maternal Medicine at the Medical University of Vienna. Routine genetic evaluation included karyotyping and chromosomal microarray analysis. Retrospectively, exome sequencing was performed in the index case of 11 families, if stored DNA was available. Confirmation analyses and genetic diagnosis of siblings were performed by using Sanger sequencing.

Results

Whole exome sequencing identified pathogenic variants of CNTN1, RYR1, NEB, GLDN, HRAS and TNNT3 in six cases of 11 families. In three of these families, the variants were confirmed in the respective sibling.

Conclusions

The present study demonstrates a high diagnostic yield of exome sequencing in fetuses affected by akinesia syndrome, especially if family history is positive. Still, in a large part the underlying genetic cause remained unknown, whereas precise clinical evaluation in combination with exome sequencing shows to be the best tool to find the disease causing variants.  相似文献   

11.

Objective

Congenital lymphatic anomalies (LAs) arise due to defects in lymphatic development and often present in utero as pleural effusion, chylothorax, nuchal and soft tissue edema, ascites, or hydrops. Many LAs are caused by single nucleotide variants, which are not detected on routine prenatal testing.

Methods

Demographic data were compared between two subcohorts, those with clinically significant fetal edema (CSFE) and isolated fetal edema. A targeted variant analysis of LA genes was performed using American College of Medical Genetics criteria on whole exome sequencing (WES) data generated for 71 fetal edema cases who remained undiagnosed after standard workup.

Results

CSFE cases had poor outcomes, including preterm delivery, demise, and maternal preeclampsia. Pathogenic and likely pathogenic variants were identified in 7% (5/71) of cases, including variants in RASopathy genes, RASA1, SOS1, PTPN11, and a novel PIEZO1 variant. Variants of uncertain significance (VOUS) were identified in 45% (32/71) of cases. In CSFEs, VOUS were found in CELSR1, EPHB4, TIE1, PIEZO1, ITGA9, RASopathy genes, SOS1, SOS2, and RAF1.

Conclusions

WES identified pathogenic and likely pathogenic variants and VOUS in LA genes in 51% of fetal edema cases, supporting WES and expanded hydrops panels in cases of idiopathic fetal hydrops and fluid collections.  相似文献   

12.
We report two cases of prenatal detection of lissencephaly by high-resolution ultrasound. The first case studied was referred for high-risk obstetrical management and serial antenatal ultrasounds because of a family history of lissencephaly in an unresolved chromosomal abnormality. Diagnosis of a smooth gyral pattern consistent with lissencephaly was made at 32 weeks' gestation. The second case was referred for prenatal ultrasound because of a size versus dates discrepancy. The ultrasound examination showed a smooth gyral pattern at 31.5 weeks. In light of this ultrasound finding, a fetal blood sample was obtained and a chromosomal abnormality reported, confirming the diagnosis. To our knowledge, these cases represent the first report of the sonographic prenatal diagnosis of cerebral agyria or lissencephaly.  相似文献   

13.
14.
Cell-free fetal DNA analysis for non-invasive prenatal screening of fetal chromosomal aneuploidy has been widely adopted for clinical use. Fetal monogenic diseases have also been shown to be amenable to non-invasive detection by maternal plasma DNA analysis. A number of recent technological developments in this area has increased the level of clinical interest, particularly as one approach does not require customized reagents per mutation. The mutational status of the fetus can be assessed by determining which parental haplotype that fetus has inherited based on the detection of haplotype-associated SNP alleles in maternal plasma. Such relative haplotype dosage analysis requires the input of the parental haplotype information for interpretation of the fetal inheritance pattern from the maternal plasma DNA data. The parental haplotype information can be obtained by direct means, reducing the need to infer haplotypes using DNA from other family members. The technique also allows the assessment of complex mutations and has multiplexing capabilities where a number of genes and mutations can be assessed at the same time. These advantages allow non-invasive prenatal diagnosis of fetal monogenic diseases to be much more scalable. These applications may drive the next wave of clinical adoption of cell-free fetal DNA testing. © 2018 The Authors Prenatal Diagnosis Published by John Wiley & Sons Ltd  相似文献   

15.
A Jewish couple of mixed origin was referred for genetic counseling following termination of pregnancy at 18 weeks of gestation due to severe ventriculomegaly with aqueduct stenosis. Trio exome sequencing revealed a loss-of-function heterozygous variant in the SMARCC1 gene inherited from an unaffected mother. The SMARCC1 gene is associated with embryonic neurodevelopmental processes. Recent studies have linked perturbations of the gene with autosomal dominant congenital hydrocephalus, albeit with reduced penetrance. However, these studies were not referenced in the SMARCC1 OMIM record (*601732) and the gene was not considered, at the time, an OMIM morbid gene. Following our case and appeal, SMARCC1 is now considered a susceptibility gene for hydrocephalus. This allowed us to reclassify the variant as likely pathogenic and empowered the couple to make informed reproductive choices.  相似文献   

16.
The aim of this study was to determine the diagnostic yield of exome sequencing (ES) above that of chromosomal microarray analysis (CMA) or karyotyping in fetuses with isolated fetal growth restriction (FGR). This was a systematic review conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Selected studies included those with (a) only fetuses with FGR in the absence of fetal structural anomalies and (b) negative CMA or karyotyping results. Only positive variants classified as likely pathogenic or pathogenic determined as causative of the fetal phenotype were considered. A negative CMA or karyotype result was treated as the reference standard. Eight studies with data on ES diagnostic yield, including 146 fetuses with isolated FGR, were identified. Overall, a pathogenic variant determined as potentially causative of the fetal phenotype was found in 17 cases, resulting in a 12% (95% CI: 7%–18%) incremental performance pool of ES. The vast majority were studied before 32 weeks'gestation. In conclusion, a monogenic disorder was prenatally found in association with apparently isolated FGR in 12% of these fetuses.  相似文献   

17.

Objective

We performed a 1-year evaluation of a novel strategy of simultaneously analyzing single nucleotide variants (SNVs), copy number variants (CNVs) and copy-number-neutral Absence-of-Heterozygosity from Whole Exome Sequencing (WES) data for prenatal diagnosis of fetuses with ultrasound (US) anomalies and a non-causative QF-PCR result.

Methods

After invasive diagnostics, whole exome parent-offspring trio-sequencing with exome-wide CNV analysis was performed in pregnancies with fetal US anomalies and a non-causative QF-PCR result (WES-CNV). On request, additional SNV-analysis, restricted to (the) requested gene panel(s) only (with the option of whole exome SNV-analysis afterward) was performed simultaneously (WES-CNV/SNV) or as rapid SNV-re-analysis, following a normal CNV analysis.

Results

In total, 415 prenatal samples were included. Following a non-causative QF-PCR result, WES-CNV analysis was initially requested for 74.3% of the chorionic villus (CV) samples and 45% of the amniotic fluid (AF) samples. In case WES-CNV analysis did not reveal a causative aberration, SNV-re-analysis was requested in 41.7% of the CV samples and 17.5% of the AF samples. All initial analyses could be finished within 2 weeks after sampling. For SNV-re-analysis during pregnancy, turn-around-times (TATs) varied between one and 8 days.

Conclusion

We show a highly efficient all-in-one WES-based strategy, with short TATs, and the option of rapid SNV-re-analysis after a normal CNV result.  相似文献   

18.
We report two male fetuses born to a healthy unrelated couple, with agenesis of the corpus callosum identified on detailed 20-week ultrasound scans and confirmed by in-utero MRI. Whole-genome sequencing identified a likely pathogenic missense variant in the CLCN4 gene, establishing this as the causative gene in the family. Pathogenic variants in the CLCN4 gene cause a neurodevelopmental disorder (also called Raynaud-Claes syndrome) inherited in an X-linked pattern. The disorder is characterised by developmental delay, intellectual disability, autism spectrum disorder, epilepsy, mental health conditions, and significant feeding difficulties, predominantly, but not exclusively, affecting males. This is the first report of a prenatal phenotype associated with variants in the CLCN4 gene. The diagnosis of the CLCN4-related neurodevelopmental disorder in this family allowed accurate genetic counseling and discussion of reproductive choices. This leaves uncertainty about the possibility of a postnatal neurodevelopmental phenotype in heterozygous females, which we discuss.  相似文献   

19.

Objective

We aimed to investigate how the presence of fetal anomalies and different X chromosome variants influences Cell-free DNA (cfDNA) screening results for monosomy X.

Methods

From a multicenter retrospective survey on 673 pregnancies with prenatally suspected or confirmed Turner syndrome, we analyzed the subgroup for which prenatal cfDNA screening and karyotype results were available. A cfDNA screening result was defined as true positive (TP) when confirmatory testing showed 45,X or an X-chromosome variant.

Results

We had cfDNA results, karyotype, and phenotype data for 55 pregnancies. cfDNA results were high risk for monosomy X in 48/55, of which 23 were TP and 25 were false positive (FP). 32/48 high-risk cfDNA cases did not show fetal anomalies. Of these, 7 were TP. All were X-chromosome variants. All 16 fetuses with high-risk cfDNA result and ultrasound anomalies were TP. Of fetuses with abnormalities, those with 45,X more often had fetal hydrops/cystic hygroma, whereas those with “variant” karyotypes had different anomalies.

Conclusion

Both, 45,X or X-chromosome variants can be detected after a high-risk cfDNA result for monosomy X. When there are fetal anomalies, the result is more likely a TP. In the absence of fetal anomalies, it is most often an FP or X-chromosome variant.  相似文献   

20.

Objective

Ultrasound assessment of the fetal anatomy and fetal echocardiography are feasible in the first trimester of pregnancy. This study was designed to assess the performance of a comprehensive fetal anatomy assessment in a high-risk population at a tertiary fetal medicine unit.

Methods

A retrospective review of high-risk patients undergoing comprehensive fetal anatomy ultrasound assessment between 11 weeks and 13 + 6 weeks of gestation was conducted. Findings of the early anatomy ultrasound scan were compared with those of the second trimester anatomy scan, and birth outcomes or post-mortem results.

Results

Early anatomy ultrasounds were performed in 765 patients. The sensitivity of the scan for detecting fetal anomalies compared to the birth outcome was 80.5% (95% CI 73.5–86.3) and specificity was 93.1% (95%CI 90.6–95.2). Positive and negative predictive values were 78.5% (95% CI 71.4–84.6) and 93.9% (95% CI 91.4–95.8), respectively. The most missed and overdiagnosed abnormalities were ventricular septal defects. The second trimester ultrasound had sensitivity of 69.0% (95% CI 55.5–80.5) and specificity of 87.5% (95% CI 84.3–90.2).

Conclusions

In a high-risk population, early assessments had similar performance metrics as the second trimester anatomy ultrasound. We advocate for a comprehensive fetal assessment in the care of high-risk pregnancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号