首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
本文通过观测陕西师范大学长安校区52 m高度范围内的臭氧浓度和相关气象条件,研究了西安市长安区O_3浓度的昼夜变化和垂直变化规律,探究O_3浓度与NOx浓度、与气象条件之间相关性,为客观地掌握西安市长安区O_3污染特征提供参考和依据。观测结果表明:(1)西安市长安区52 m高度范围内夏季的臭氧浓度比冬季高,大约是冬季浓度2倍。冬季和夏季的臭氧浓度昼夜变化趋向大致相同,将变化特点分为3个阶段,分别是04:00?—?08:00、10:00?—?20:00和22:00?—次日02:00,呈现一高一低的阶段变化。(2)西安市长安区夏季与冬季臭氧浓度垂直变化规律各有2种类型。夏季第1种类型出现在08:00?—?18:00,其变化特点是臭氧浓度在1?—?16 m、19?—?28 m、31?—?52 m高度分别随着高度增加而呈现递增、递减再递增的变化规律。冬季08:00?—?18:00出现第1种类型,在1?—?16 m、19?—?37 m、40?—?52 m高度臭氧浓度也随着高度增加而呈现递增、递减再递增的变化规律。夏季与冬季20:00?—?次日06:00均出现第2种类型,臭氧浓度在1?—?16 m、19?—?52 m高度随高度增加而呈现先递增后递减的变化规律。(3)西安市长安区夏季与冬季臭氧浓度与风速、相对湿度以及氮氧化物浓度呈负相关,与温度呈正相关,与气压的相关性较低。  相似文献   

2.
城市作为化石源CO_2(CO_(2_(ff)))排放的热点区域.获得其大气CO_(2_(ff))浓度的日变化特征对于深刻理解城市地区CO_(2_(ff))的时空变化规律,进而制定合理的节能减排政策至关重要。本研究通过AMS-~(14)C技术,示踪了北京市冬季一个典型日变化事件中大气(CO_(2_(ff)))的变化过程,并探讨了其影响因素。本次日变化事件中大气δ~(13)CO_2的值为(-13.9±0.8)%。(-14.8‰—-12.7‰),△~(14)CO_2的值为(-151.6±51.3)‰((-214.2±2.9)‰-(-82.3±3.0)‰),CO_(2_(ff))浓度为104.4±44.0μL·L~(-1)(168.6±2.7-52.1±3.2μL·L~(-1)。CO_(2_(ff))浓度具有较大的曰变化,夜晚CO_(2_(ff))浓度明显高于白天,主要是由于夜间大气混合层高度较低、供暖消耗更多的化石燃料以及在东南风条件下因北京不利的扩散条件而使CO_(2_(ff))聚积。此外,在早晚高峰期间,观察到由于交通流量增加引起的较高CO_(2_(ff))浓度。同期PM_(2.5)浓度相似的日变化过程进一步验证了本次CO_(2_(ff))观测结果的可靠性。  相似文献   

3.
西安地区夏季臭氧的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用WRF-CHEM模式对关中地区2015年7月25日至30日的一次O_3污染事件进行了数值模拟。通过与地面观测数据对比发现,WRF-CHEM模式基本上可以合理模拟西安和咸阳城市群O_3和NO_2的质量浓度的时空分布。敏感性试验表明,在臭氧生成的峰值期(12:00—18:00 LT),交通源是城市重要的O_3源,无论在高浓度臭氧条件下还是低浓度臭氧条件下,贡献量都高于15μg?m~(-3),平均贡献量均高于24μg?m~(-3);工业源仅在臭氧峰值生成时期贡献明显;生物源无论在高浓度还是低浓度臭氧的条件下,平均贡献都在16μg?m~(-3)以上;居民源的贡献基本低于10μg?m~(-3);能源生产源有降低O_3质量浓度的作用,但在臭氧生成的峰值时期,能源生产源可以增加O_3质量浓度。随着交通源排放量的增加,O_3的质量浓度逐渐增加,尤其在臭氧的峰值期。在臭氧生成峰值期,当氮氧化物(NOx)减少50%时,除城市中心臭氧浓度略增加,其他地区臭氧质量浓度均在下降;当挥发性有机物(VOCs)减少50%时,城市群内臭氧质量浓度都在下降;当NO_x和VOCs同时减少50%时,臭氧质量浓度都呈现下降趋势,减少量可达20μg?m~(-3)以上。在整个研究区域内,H_2O_2/HNO_3比值均在0.6以上,这表明西安和咸阳城市群属于NO_x控制区。  相似文献   

4.
腾格里沙漠民勤沙丘CO_2浓度与昼夜变化规律研究   总被引:1,自引:1,他引:0  
邵天杰  赵景波  郁科科  董治宝 《环境科学》2010,31(12):3004-3010
为查明沙漠区CO2浓度和对大气CO2的影响以及在全球碳循环中的作用,利用红外CO2监测仪于2009年9月对腾格里沙漠民勤实验点不同类型不同深度的沙层CO2含量变化进行了昼夜连续观测.根据12个钻孔CO2浓度的昼夜观测结果可知,民勤沙漠区不同观测点CO2浓度差异较大,各观测点昼夜CO2浓度变化在310×10-6~2 630×10-6之间;夜间沙层CO2浓度低,白天CO2浓度高;CO2浓度在深度上也有明显的差异,不同深度CO2浓度由大到小的顺序是:4 m(3m)2 m1m;与温带半湿润的西安地区相比,位于极端干旱区的民勤沙漠区CO2浓度显著低;CO2浓度昼夜变化明显,从当日09:00左右到次日09:00左右均呈现由低到高再到低的变化规律;在沙层水分一定的条件下,昼夜温度变化是造成沙层CO2浓度昼夜变化的主要原因,两者呈显著正相关关系;含水量较高沙层CO2浓度明显高于含水量较低沙层,沙层含水量高低是决定沙层CO2浓度的主要因素;4 m深度以上沙层CO2浓度均高于地表空气CO2浓度,表明极端干旱的沙漠区可能是CO2的来源区,也指示环境恶劣的裸露流动沙丘微生物活动产生的沙层CO2浓度仍然超过了大气CO2浓度.  相似文献   

5.
利用红外CO2分析仪对西安市雁塔区南二环西段CO2浓度进行昼夜观测,研究大气CO2昼夜动态规律及其影响因素。监测结果显示,CO2浓度昼夜变化可分为2∶00—6∶00,8∶00—12∶00,14∶00—20∶00,22∶00—24∶00四个阶段。7月份四个阶段的浓度依次为较高→最高→最低→较低,呈现出双峰模态;10月份为浓度较低→较高→最低→最高,呈现出极不对称双峰模态。7月与10月CO2浓度的周内与周末变化规律有相似之处,同时也存在差异。在80 m高度范围内,白天CO2浓度均随着高度的增加而降低,夜间CO2在高度上的变化不稳定,且10月份CO2浓度明显高于7月份。温度影响CO2浓度变化,但在不同月份,温度的影响存在明显差异。CO2浓度变化主要与植物的光合作用有关。季节变化和植被比人类活动对CO2浓度变化的影响更大。  相似文献   

6.
研究河口感潮沼泽湿地土壤间隙水溶解性CO_2和CH_4浓度日动态对于揭示河口湿地碳循环过程具有重要作用.于2010年的4月4~5日和9月2~3日(小潮日)和4月14~15日和9月9~10日(大潮日),对闽江河口鳝鱼滩中部中高潮滩过渡区分布的短叶茳芏(Cyperus malaccensis)+芦苇(Phragmites australis)沼泽湿地的土壤间隙水溶解性CO_2和CH_4浓度进行24 h连续监测,并同步测定了原位土壤温度、电导率及NH+4-N等参数.结果表明:14月与9月大、小潮日土壤间隙水溶解性CH_4浓度日变化范围分别介于88.20~190.74、53.42~141.24、16.27~81.89和44.90~88.53μmol·L~(-1),其中4月大、小潮日土壤间隙水溶解性CH_4浓度均呈现昼低夜高特征(P0.05),而9月大、小潮日呈现相反的日变化趋势(P0.05);29月大、小潮日土壤间隙水溶解性CO_2浓度日变化范围分别介于19.33~40.1μmol·L~(-1)和9.69~29.96μmol·L~(-1),均呈现昼低夜高特征(P0.01);3涨潮期间土壤间隙水溶解性CO_2浓度均要低于涨潮前与落潮后,而涨潮期间土壤间隙水溶解性CH_4浓度高于涨潮前和落潮后.  相似文献   

7.
兰州春夏季PM10碳组分昼夜变化特征与来源分析   总被引:3,自引:2,他引:1  
马丽  余晔  王博  赵素平  李刚 《环境科学》2017,38(4):1289-1297
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响.  相似文献   

8.
2020年11月,选择闽江河口鳝鱼滩的芦苇湿地、短叶茳芏湿地及二者空间扩展形成的交错带湿地为研究对象,探讨了不同湿地近地气层中主要含硫气体(H2S)浓度的日变化特征.结果表明,3种湿地不同高度的H2S浓度均呈现出不同的日变化特征,其值均在白天(9:00—18:00)较高且变幅较大,而在夜间(18:00—次日6:00)较低且变幅较小.芦苇湿地的H2S平均浓度最高((0.0013±0.0025)μL·L-1),交错带湿地次之((0.0011±0.0012)μL·L-1),短叶茳芏湿地最低((0.0009±0.0013)μL·L-1).不同湿地的H2S日平均浓度整体均随高度的增加而降低,H2S主要集中在近地面0~0.5 m高度且其浓度的变异性最低.研究发现,潮汐及风速是影响不同湿地H2S浓度日变化特征的共性因素,其中,芦苇湿地还受温度、电导率(EC)及氧化还原电位(Eh)的显...  相似文献   

9.
洞穴空气CO_2和~(222)Rn是岩溶洞穴中重要的小气候参数,理解影响洞穴空气CO_2和~(222)Rn浓度的时空变化特征及控制因素,对合理开发洞穴旅游资源有一定现实意义。本文通过2011年12月至2019年4月对我国南北气候过渡带附近河南省栾川县鸡冠洞空气CO_2和~(222)Rn浓度的多时空尺度的变化特征进行监测研究,主要得到以下结论:(1)在空间变化上,洞穴空气中的CO_2和~(222)Rn浓度主要受洞穴结构和通风效应的影响。越往洞内,CO_2和~(222)Rn浓度越大。(2)洞穴空气中的CO_2和~(222)Rn浓度季节变化特征明显,雨季上升,旱季下降,都受洞外水热环境的影响。鸡冠洞CO_2浓度变化范围为307~4 678 mg/L,受游客旅游活动的影响较为显著,空气~(222)Rn浓度变化范围为33. 0~2 421. 2 Bq/m~3,主要受洞穴结构和通风作用的影响。(3)在昼夜尺度的变化上,洞穴空气CO_2白天上升,夜间下降,主要受旅游活动的影响。空气中的~(222)Rn浓度与旅游活动的关系不明显。(4)鸡冠洞內吸入氡子体所导致的內照射人均年有效剂量为29. 6 mSv/a,虽然氡子体对一般游客产生危害较小,但年累积量需考虑,尤其是鸡冠洞内一线导游的核辐射安全防护。  相似文献   

10.
河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较   总被引:3,自引:1,他引:2  
岩溶洞穴空气CO_2变化影响次生沉积物沉积和溶蚀,它关系到洞穴旅游景观的稳定性及洞穴环境的舒适性,是岩溶作用发生的关键因素,进行洞穴空气CO_2变化的机制研究对于理解岩溶作用发生规律和现代洞穴合理保护具有重要意义.本文基于对我国南北地理分界区域河南西部鸡冠洞2011年12月至2016年5月近5年连续洞穴CO_2、水文地球化学指标、洞内外温度及湿度、大气降水和游客量等数据监测,并结合2016年5月19~20日洞穴CO_2等指标的昼夜的系统监测,分析了鸡冠洞洞穴空气CO_2时空变化特征和昼夜变化特征及其影响因素,结果表明:1在空间尺度上,越靠近洞口通风效应越强,洞穴空气p CO_2越低,越接近大气的p CO_2;洞穴结构及外界环境变化尤其是气候变化导致的土壤中p CO_2变化也会对鸡冠洞空气p CO_2变化产生影响.2在长时间尺度,鸡冠洞洞穴空气p CO_2夏季明显高于冬季,对比分析发现旅游活动和岩溶作用是其主要的影响因子.3在短时间尺度上(昼夜变化),鸡冠洞洞穴空气p CO_2变化主要受旅游活动的影响,建议景区在进行旅游开发的时候要考虑高峰期游客人数对CO_2的影响及岩溶景观的合理保护.  相似文献   

11.
三峡水库香溪河库湾拟多甲藻的昼夜垂直迁移特性   总被引:8,自引:1,他引:7  
2008年4月3日08:00—4日08:00在三峡水库香溪河库湾5个监测点对拟多甲藻(Peridiniopsis sp.)进行了24 h连续监测,以研究拟多甲藻的昼夜垂直迁移特性,并解释拟多甲藻水华表层水体表观颜色昼夜变化的原因. 结果表明:拟多甲藻在12 m水深以上水柱中存在明显的周期性昼夜垂直迁移特性,00:00—16:00拟多甲藻向表层水体迁移并聚集,最大上移速度约为2 m/h;16:00—00:00拟多甲藻向下部水体迁移,最大下移速度约为4 m/h;拟多甲藻的昼夜垂直迁移是导致拟多甲藻水华表层水体表观颜色不断变化的主要原因. 水体中各层叶绿素a质量浓度〔ρ(Chla)〕昼夜变化较大,用单层ρ(Chla)不足以评价藻类水华暴发程度;均深叶绿素a质量浓度〔ρ(A.D. Chla)〕的昼夜变化不大,能够综合表征藻类迁移水柱中藻类的现存量,可以作为河道型水库拟多甲藻水华暴发程度的评价指标.   相似文献   

12.
根据2013年10月对西安市雁塔区84 m高度范围的昼夜观测资料,研究了O_3的日变化规律、垂直分布以及气象因素对其的影响。结果表明:O_3浓度日变化规律较为明显,呈单峰型分布,早晨浓度开始上升,于14:30左右达到峰值,在16:30之后开始降低并趋于平稳,并且O_3浓度昼夜变化可分为3个阶段,8:30—16:30为O_3浓度最高阶段,18:30—00:30为O_3浓度居中阶段,2:30—6:30为O_3浓度最低和降低阶段。垂直高度上O_3浓度随高度上升而升高,并且O_3浓度的垂直梯度变化分为低—中—高3个阶段,1~30 m为O_3浓度最低层段,36~66 m为O_3浓度居中层段,70~84 m为O_3浓度最高层段。O_3浓度与NOx浓度的日变化呈明显负相关,相关系数为-0.21。O_3浓度的变化曲线与温度垂向变化曲线相似,呈现出同升同降的特点,两者呈明显正相关,相关系数为0.72。O_3浓度与湿度的日变化呈现出相反的趋势,两者呈现明显的负相关性,相关系数为-0.76。  相似文献   

13.
赵辉  郑有飞  魏莉  关清 《环境科学》2018,39(7):3418-3425
近年来,近地面O_3浓度呈不断上升趋势,高浓度O_3会影响作物的生长导致产量降低.本文利用2014~2016年南京市近地面O_3浓度的连续观测数据,分析了O_3浓度的变化特征及其对冬小麦和水稻产量与经济损失的影响.结果表明,2014~2016年南京市O_3年平均浓度分别为62.9、68.6和69.1μg·m-3,O_3浓度和超标日数均呈现逐年增加的趋势.季节平均的O_3浓度大小的顺序为:夏季、春季、秋季和冬季.四季O_3浓度的日变化均为明显的"单峰型",峰值出现在15:00~16:00,谷值出现在07:00~08:00.2014~2016年冬小麦生长季期间AOT40的数值分别为10.5、14.4和9.4μL·L~(-1)·h,水稻生长季期间AOT40的数值分别为8.5、20.0和25.6μL·L~(-1)·h.近地面O_3对冬小麦的影响要高于水稻,其中,2014~2016年O_3造成冬小麦减产范围为21.4%~32.8%,每年的经济损失达15 076.6~27 799.6万元,造成水稻减产范围为8.1%~24.3%,每年的经济损失达19 747.2~68 075.7万元.  相似文献   

14.
北京城市大气CO2浓度变化特征及影响因素   总被引:13,自引:3,他引:10  
北京大气CO2浓度日变化强烈,全年北京时间15:00时前后为全天最低值,最高值则出现在夜间,日变化幅度为23.2~39.0μmol·mol-1,夏季和秋季日变化幅度比冬季和春季大.北京城区大气CO2浓度季节变化明显,最大值出现在冬季,月平均浓度为421.5~441.0μmol·mol-1;最小值则在夏季,月平均浓度367.4~371.6μmol·mol北京CO2浓度的季节变化幅度明显高于附近的华北兴隆区域站和瓦里关山大陆本底站等的相应值,其原因是北京CO2浓度季节变化主要受人为取暖活动控制,同时植被的季节变化也起一定作用.1993~1995年北京大气CO2浓度上升较快,平均增长率为3.7%·a-1,1995年平均浓度达到最高,为409.7±25.9μmol·mol,随后缓慢下降.  相似文献   

15.
为了解西安市高新区采暖期大气颗粒物(包括PM1 0和PM2.5)污染状况,于2013年1月1日到2013年3月15日在高新区进行了为期74 d的连续自动采样。结果表明:采样期间高新区PM1 0的小时浓度范围28~1744μg/m3,平均浓度为332μg/m3;PM2.5的小时浓度范围13~946μg/m3,平均浓度为207μg/m3。PM2.5占PM1 0的平均比例为63.8%。颗粒物浓度日变化呈现弱双峰特征,分别在凌晨2:00和上午7:00~8:00左右达到浓度最高值,但是上午的峰值并不明显。颗粒物在15:00~1 6:00之间浓度达到最低值,由于受采暖影响,18:00之后颗粒物浓度明显上升。  相似文献   

16.
上海春季大气PM_1分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2015年春季(3月—5月)上海地区9个大气成分站在线观测获得的地面PM_1质量浓度数据,研究该地区PM_1浓度时空分布特征。结果表明,上海地区各站PM_1污染浓度水平总体较高,整个上海地区的PM_1小时平均浓度为26.3μg?m~(-3),最大值为126.4μg?m~(-3),最小值为2.4μg?m~(-3);各站PM_1浓度的日变化分布表现为峰值类型和峰值时间不一;各站PM_1三个主要粒径段的质量浓度比值均有一定的差异,其中东滩PM_1比例最大,宝山最小;上海春季PM_1的浓度逆周末效应,可能是由于春季气象条件周期性影响。  相似文献   

17.
采用表面冷凝法收集深圳市6个不同区域的空气冷凝水样品,研究城市中不同功能区对周边环境空气冷凝水化学组分的影响程度,并测量分析在不同时段,由于工业生产等人为活动,空气冷凝水中重金属及离子含量的变化特征。研究结果表明:工业区样品的Cu浓度最高可达261.9μg/L,其Pb浓度为居民区的7倍。工业生产、工程建设等人为活动,能够不同程度地影响冷凝水的化学组分,施工的建筑粉尘导致居民区区域样品中Ca2+浓度(3.49 mg/L)比道路周边(1.98 mg/L)高76.3%。工业环境对空气冷凝水化学组分的影响具有明显的时间变化特征;在交通高峰期17:00—21:00各指标明显上升,非高峰期时段冷凝水中SO2-4、NH+4及NO-3的浓度分别为1.82,3.10,0.73 mg/L,而交通高峰期为3.67,6.12,2.27 mg/L。  相似文献   

18.
罗佳宸  李思悦 《环境科学》2018,39(11):5217-5226
为研究河流水-气界面CO_2通量的季节和日变化特征;于2016年7月15~17日以及2017年11月4~6日对三峡库区嘉陵江支流竹溪河进行定点定时采集表层水样,并同步监测关键环境因子,采用亨利定律结合薄边界层模型计算其水-气界面CO_2通量F(CO_2).结果表明,竹溪河表层水CO_2分压p(CO_2)及界面CO_2脱气通量呈现出显著的日间和季节变化,以及明显的日内变化特征:在上午09:00前后达到释放高峰,随后波动下降;水-气界面CO_2通量日间均值分别为(100. 9±31. 6)、(78. 6±12. 1)、(83. 9±29. 7)、(137. 5±42. 1)、(147. 6±34. 0)、(132. 4±21. 7) mmol·(m~2·d)~(-1);并表现出夏季表层水体CO_2释放通量明显低于秋季,其均值分别为(87. 8±27. 5) mmol·(m~2·d)~(-1)和(139. 2±34. 0) mmol·(m~2·d)~(-1);总体表现出大气CO_2源的特征.竹溪河p(CO_2)和F(CO_2)受到诸多环境因子的影响,相关分析表明,pH、碱度、水温和气温是主要环境影响因子,CO_2释放通量可以用pH和碱度预测.  相似文献   

19.
重庆市北碚大气中PM2.5、NOx、SO2和O3浓度变化特征研究   总被引:4,自引:0,他引:4  
重庆是我国西南工业重镇,但长期受大气污染困扰.利用全自动在线环境监测仪器,于2012年1月—2014年2月,对重庆市北碚区大气中的典型污染物PM2.5、NO_x、SO_2和O_3进行了观测研究.结果表明:重庆北碚大气首要污染物为PM2.5,2012和2013年平均浓度分别为(67.5±31.9)和(66.6±37.5)μg·m~(-3),是国家环境空气质量一级标准35μg·m~(-3)的1.9倍,两年超过国家二级标准的天数分别为119和126 d,年超标率均大于1/3;两年NO_x,SO_2及O_3的年平均浓度分别为(57.1±24.6)和(55.1±36.6),(43.1±24.0)和(35.0±21.9)及(31.1±24.9)和(48.5±37.4)μg·m~(-3).大气污染物浓度具有明显的季节变化特征,PM2.5和NO_x冬季污染最为严重,两年冬季平均值分别比两年年平均值高33.6%、59.6%和43.2%、8.5%;O_3表现为夏高冬低;SO_2春季最高且污染最轻.大气污染物日变化显示PM2.5和NO_x浓度呈双峰日变化形式,有早晚两个峰值,与城市交通高峰相对应.SO_2和O_3浓度呈单峰日变化,前者峰值出现在午前10∶00—12∶00大气对流层被打破之后,而后者峰值出现在午后16∶00局地光化学最强之时.消减各种污染源的颗粒物直接排放,消减气态污染物SO_2和NO_x的工业排放,消减机动车NO_x和VOCs等的排放,才有可能使重庆北碚的大气污染状况得到改善.  相似文献   

20.
利用红外CO2监测仪对青海湖地区哈尔盖附近不同植被、不同深度条件下的土壤CO2浓度进行了多次昼夜观测。观测结果表明,在年平均温度1℃左右的高寒青海湖地区,从早8:00到次日早8:00土壤CO2浓度具有从低到高再到低的昼夜变化规律,这种变化特点与昼夜温度变化基本一致。在土壤夜间最低温度为0℃和更高地区,土壤CO2浓度的这...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号