首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
生物炭对农田地表反照率及土壤温度与湿度的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为了探究生物炭输入后农田地表反照率及土壤温度与土壤湿度的响应,通过田间小区试验,分析生物炭影响下农田地表反照率、土壤温度、土壤湿度的变化情况. 试验共设置3个主处理——CK处理(不施用生物炭)、BC5处理〔生物炭施用量为0.5 kg/(m2·a)〕、BC45处理〔生物炭施用量为4.5 kg/(m2·a)〕,同时每个主处理设置2个副处理——种植作物(以+表示)和未种植作物(以-表示). 结果表明:在有作物覆盖条件下,相对于CK+处理,BC45+、BC5+处理的地表反照率在玉米苗期分别下降23.1%、19.1%(P<0.05),在玉米拔节期分别下降20.0%、15.1%(P<0.05),但在玉米抽穗期至成熟期,各处理的地表反照率无明显差异. BC5+、BC45+处理的土壤温度、土壤湿度与CK+处理相比均未见显著改变. 在未种植作物条件下,相对于CK-处理,BC45-、BC5-处理的地表反照率最大降幅分别为26.7%、24.3%(P<0.05),BC5-处理的土壤湿度增幅为1.7%~3.8%,BC45-处理的土壤温度、土壤湿度无显著变化. 可见,随着玉米冠层结构的发展,生物炭输入降低地表反照率的效应在逐渐减弱甚至消失;生物炭输入对土壤温度、土壤湿度的影响程度与作物覆盖条件以及生物炭施用量有关.   相似文献   

2.
生物炭介导的不同地表条件下土壤N2O的排放特征   总被引:3,自引:1,他引:2  
为探究不同地表条件下农田土壤N_2O产生与释放对生物炭输入的响应,于2014~2015年小麦-玉米生长季,采用田间小区试验的方法,在不同生物炭用量[0 t·(hm~2·a)-1(CK)、5 t·(hm~2·a)-1(BC5)、45 t·(hm~2·a)-1(BC45)]及不同地表条件下[种植作物(以+表示)、裸地(以-表示)],对土壤N_2O释放、土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)的动态变化进行了观测分析.结果表明:(1)在小麦生长季,CK+、BC5+、BC45+这3个处理的土壤N_2O排放通量分别在21.70~88.91、21.42~130.09、64.44~179.58μg·(m~2·h)-1之间变动,BC45+处理显著高于其它2个处理(P0.05).其中在小麦生长盛期(返青拔节期-孕穗抽穗期),3个处理的土壤N_2O排放通量均较小麦越冬期显著下降(P0.05),而且BC45+处理基于CK+、BC5+的土壤N_2O排放通量增幅在小麦孕穗抽穗期已较其越冬期时分别降低了18.43%、14.62%.在玉米生长季前期,BC45+处理的土壤N_2O排放通量也显著高于BC5+和CK+处理(P0.05),但至玉米的抽穗期及成熟期,BC45+处理的土壤N_2O排放通量已与BC5+和CK+无显著差异.这说明随作物生长盛期的到来及地表覆盖度的增加,生物炭介导的土壤N_2O排放的增加效应得以有效抑制.同期裸地条件下相同生物炭处理的土壤N_2O排放通量结果也证实了这一点.(2)在小麦生长季及其同期的裸地条件下,与CK相比,两种生物炭处理均可增加土壤NO_3~--N和NH_4~+-N含量,但在作物生育盛期,BC5+、BC45+处理的两种氮素形态较CK+处理均有下降,尤以BC45+最为突出,其土壤NO_3~--N和NH_4~+-N含量分别下降了96.44%、69.40%.玉米生长季与小麦季有着相近的趋势.较高生物炭施用量土壤NH_4~+-N和NO_3~--N含量在作物生育盛期的明显下降与同期土壤N_2O的排放显著减少相呼应.因作物生长发育对氮元素吸收增加致呼吸底物减少可能是生物炭介导下N_2O排放减少的原因之一.(3)在小麦生长季,生物炭施用提高土壤pH从4.62至最高5.18.至玉米季时,土壤的pH值在4.42~5.02之间波动,土壤pH值相对低时土壤N_2O的释放量相对高,反之亦然.土壤pH可在一定程度上影响土壤N_2O释放.  相似文献   

3.
为了探究生物炭输入对地表反照率及土壤呼吸的影响,通过田间小区试验的方法,在不同生物炭用量[0(CK)、0.5 kg·(m2·a)-1(BC0.5)、4.5 kg·(m2·a)-1(BC4.5)]不同地表条件下[种植作物(以+表示)、裸地(以-表示)],对农田地表反照率、土壤温湿度、土壤CO2排放通量、土壤有机碳组分等指标进行了测定分析.结果表明,在作物生长前期(玉米的苗期至拔节期、小麦苗期至越冬期),BC4.5+、BC0.5+的地表反照率相较CK+处理均有显著下降(P<0.05),小麦季最大降幅分别为23.7%、17.9%,玉米季最大降幅分别为44.5%、44.9%.随叶面积指数增加,地表反照率在3个处理间的差异随之逐渐消失,作物覆盖可有效缓解生物炭输入导致的地表反照率的降低效应;裸地条件下,生物炭处理的地表反照率较对照处理在全部的观测中均有显著下降(P<0.05);生物炭在输入初期可显著增加土壤CO2释放量(P<0.05),但其增幅随时间逐渐减小,其中BC4.5+较CK+的增幅从276.7%逐步降低至36.1%,BC4.5-较CK-的增幅从163.5%明显减弱至39.8%.生物炭处理较对照处理增加的CO2释放量主要来自生物炭-土壤共存体系中的易分解碳组分,其土壤CO2释放通量与土壤水溶性有机碳含量呈显著相关(P<0.05);生物炭输入导致的地表反照率变化未对土壤呼吸产生直接的影响,而且生物炭输入可降低土壤呼吸温度敏感性Q10值,表明生物炭具有一定的化学和生物学稳定性.  相似文献   

4.
生物炭对农田土壤-植物系统有机碳储量的影响   总被引:2,自引:0,他引:2  
为探究生物炭对农田土壤有机碳储量以及作物固碳量的作用效应,在长江中下游地区地带性土壤黄棕壤上设置田间小区试验,采用玉米-小麦轮作方式,在不同生物炭用量[0.0 kg/(m~2·a)-(CK)、0.5 kg/(m~2·a)-(BC1)、4.5 kg/(m~2·a)-(BC2)]条件下,对土壤有机碳含量、作物生物量、作物光合固碳量等指标进行了测定分析,并估算了试验条件下农田土壤-植物系统有机碳储量。结果表明:(1)在0~20cm土层,BC2处理两季玉米收获时的土壤有机碳储量(3.72和3.77 kg/m~2)分别比CK处理增加18.93%和19.23%。小麦季BC2的土壤有机碳储量达3.43 kg/m~2,也比CK增加了12.83%。BC1处理比CK虽有增加,但未形成显著差异。土壤有机碳含量是土壤有机碳储量增加的基础。(2)两季玉米收获时其BC1处理的单株固碳量未显著高于对照,BC2处理的玉米单株固碳量(80.06和80.69 g/株)则分别比对照提高6.46%和7.16%。在小麦季,2个生物炭处理的植株单株固碳量均高于对照,尤以BC2处理较为突出,其单株固碳量达到3.06 g/株,比对照显著提高16.17%。作物生物量对植株单株固碳量有显著贡献。(3)就土壤-植物系统有机碳储量而言,BC2处理下,在两季玉米收获时该值分别为4.42和4.50 kg/m~2,显著高于CK处理,增幅达16.75%和17.09%。小麦季BC2处理的土壤-植物系统有机碳储量也达到了3.70 kg/m~2,比CK显著提高13.07%。在三季作物中,土壤有机碳储量占整个土壤-植物系统有机碳储量的80%~93%,土壤是农田生态系统碳增汇的主要来源,减少土壤碳排放可以使整个农田生态系统固定更多的碳。  相似文献   

5.
紫色土壤有机碳活性组分对生物炭施用量的响应   总被引:8,自引:0,他引:8  
罗梅  田冬  高明  黄容 《环境科学》2018,39(9):4327-4337
土壤有机碳(SOC)是土壤最重要的组成部分,土壤活性有机碳是引起土壤碳库变化的关键,为研究在不同施用量生物炭还田下土壤有机碳及其活性组分的影响,本试验在重庆国家紫色土肥力与肥料效益长期监测基地测定了无物料还田(CK)、生物炭还田(8 000 kg·hm-2,BC)、0.5倍生物炭还田(4 000 kg·hm-2,0.5 BC)、2倍生物炭还田(16 000 kg·hm-2,2BC)配施化肥处理下的紫色土丘陵区油菜/玉米轮作制中土壤有机碳及活性组分含量.结果表明:(1)施用生物炭可以显著提高土壤有机碳的含量(P0.05),在一定范围内,生物炭的施用量与土壤有机碳含量成正比.适量的生物炭施入土壤后,土壤微生物量碳(SMBC)含量上升,但0.5BC和2BC处理下土壤微生物量碳反而减少.生物炭不同施入量均可提高土壤可溶性碳(DOC)和土壤易氧化碳(ROC)的含量,其中0.5BC处理的含量最高,分别为198.83 g·kg-1和4.86 g·kg-1.(2)生物炭的施用均显著降低了土壤微生物熵和ROC/SOC,其中0.5BC处理最低,分别较CK处理下降了20.45%和4.11%,而2BC处理最高.0.5BC和BC处理均能提高DOC/SOC,且0.5BC处理显著高于BC处理.总体上,虽然生物炭还田微生物活性较低,但土壤有机碳及其稳定性较高,有利于土壤有机碳积累,促进土壤固碳.同时适量的生物炭还田可以持续稳定增长土壤有机碳含量,少量生物炭0.5BC处理还田可提高土壤中可溶性有机碳和易氧化有机碳含量.  相似文献   

6.
李娇  田冬  黄容  徐国鑫  黎嘉成  高明  王子芳 《环境科学》2018,39(9):4338-4347
在油菜/玉米轮作下,研究不同秸秆与生物炭还田方式对农田生态系统碳平衡和收益的影响,阐明秸秆和生物炭还田的固碳作用.在重庆国家紫色土肥力与肥料效益长期监测基地,通过油菜和玉米两季作物田间定位试验,设置了常规施肥(CK)、秸秆还田(CS)、生物炭还田(BC)、秸秆+速腐剂还田(CSD)、秸秆+生物炭1∶1还田(CSBC)5个处理,测定了秸秆与生物炭还田下土壤碳累积排放量,并结合实地调研数据,从土壤呼吸碳排放、土壤碳库及作物碳库角度兼顾考虑农业成本投入,分析了秸秆与生物炭还田下农田生态系统碳排放、碳固定、碳汇效应和经济环境效益.结果表明:(1)两季作物的土壤碳累积排放量均高于对照(CK),其中秸秆直接还田(CS)处理和秸秆+速腐剂还田(CSD)处理显著(P0.05);(2)与CK对比,秸秆及生物炭还田均能提高两季作物产量与生态系统净初级生产力(NPP),增产1.49%~3.92%,NPP提高了4.44%~17.90%,且秸秆+速腐剂处理(CSD)的两季作物产量与NPP均为最大;(3)各处理(除CK外)均为系统净固碳量正值,表现为"碳汇";在油菜季和玉米季两季中,系统净固碳量最高的分别为秸秆+速腐剂还田(CSD,9.05 t·hm~(-2))和生物炭还田(BC,10.75 t·hm-2)处理,而碳排放量最低的均是生物炭(BC)处理,比CK减少62.69%~81.86%.(4)油菜季的秸秆直接还田(CS)处理的两季作物产投比最高,而两季作物的BC处理均会降低产投比,但其碳排放交易量最高(466.95~561.22元·hm-2).(5)两季作物的BC处理均会提高碳生产力(CP),而BC处理的经济效益(CJ)与生态效益(CE)均显著低于其他处理.秸秆直接还田增加了系统的经济效益和生态效益,而生物炭还田降低了系统的经济效益和生态效益.  相似文献   

7.
田冬  高明  黄容  吕盛  徐畅 《环境科学》2017,38(7):2988-2999
土壤呼吸是农田生态系统碳排放的主要途径,为研究土壤呼吸、其组分和水热因子对秸秆与生物炭还田的响应,在重庆国家紫色土肥力与肥料效益长期监测基地采用根系排除法联合运用土壤呼吸自动监测系统(ACE-002/OPZ/SC)测定了无物料还田(CK)、秸秆还田(CS)、秸秆+速腐剂还田(CSD)、生物炭还田(BC)、秸秆+生物炭1∶1还田(CSBC)5种处理下的紫色土丘陵区油菜/玉米轮作制中油菜和玉米生长季的土壤呼吸及其水热因子,并计算了根系呼吸贡献.结果表明,秸秆与生物炭还田显著影响土壤呼吸季节性变化特征和峰值,除BC处理外,其他处理均促进了土壤呼吸和碳排放;油菜季土壤呼吸呈单峰曲线,在0.12~2.29μmol·(m~2·s)~(-1)波动,不同处理土壤呼吸差异显著,表现为CSCSDCSBCCKBC处理;玉米季各处理土壤呼吸变化较复杂,变化范围为1.02~15.32μmol·(m~2·s)~(-1),其中CS、CSD和CSBC呈双峰型曲线,CK和BC呈单峰曲线.土壤异养呼吸能够解释土壤总呼吸变化的86.50%~93.94%,各处理的玉米季根系呼吸贡献(26.49%~32.86%)显著低于CK处理(53.65%).土壤呼吸速率的变化主要受5cm土壤温度控制,与土壤含水量无显著关系;5cm土壤温度能够解释土壤呼吸季节变化的82%~94%.土壤呼吸的温度敏感性系数Q10值在3.28~4.47之间,与CK处理相比,CS、CSD、CSBC处理的Q10分别降低了26.62%、18.12%、20.58%;而BC处理则增大了12.53%.水热双因子对土壤呼吸不存在协同作用,仅用土壤温度单因子指数函数可较好地模拟土壤呼吸速率的动态变化.可见,秸秆、秸秆+速腐剂和秸秆+生物炭还田显著促进了土壤呼吸,生物炭还田抑制了土壤呼吸.  相似文献   

8.
黄洋  郭晓  胡学玉 《环境科学》2020,41(6):2861-2868
以磷镉富集土壤(总Cd 0.94mg·kg~(-1)、全磷0.86g·kg~(-1))和低镉积累基因型红菜薹金秋红三号为供试材料,采用盆栽试验的方法,设置了绝对对照CK0(仅施NK无机肥)、相对对照CKp(施NPK无机肥)、生物质炭BC(BC+NK无机肥)和BC-CKp(BC+NPK)这4个处理,考察了土壤磷素和重金属Cd的生物有效性、植株可食部位生物量及其Cd累积特征和土壤基本性状等指标.结果表明,至作物收获时,添加生物质炭的BC和BC-CKp处理与未添加生物质炭的CK0和CKp处理相比,土壤有效Cd含量分别降低了8.23%和5.68%;同时土壤有效磷含量提高了11.60~16.26mg·kg~(-1).施加外源磷肥的CKp和BC-CKp处理土壤有效Cd含量与未施加磷肥的CK0和BC处理相比分别降低了31.43%和33.29%.除CK0处理外,其它3个处理(CKp、BC及BC-CKp)的红菜薹作物可食部位Cd含量均未超出我国食品安全国家标准(GB 2762-2017)中Cd的限定值0.1mg·kg~(-1).结果表明,将生物质炭输入到磷素富集的中、轻度Cd污染土壤中,能够同时实现土壤中重金属Cd钝化和磷素活化的双重功能;且在不额外使用磷素化肥的条件下,种植弱吸收低积累Cd的蔬菜作物基因型,既可以保证可食部位生物量增加,也可以使其可食部位重金属Cd含量满足食品安全国家标准.  相似文献   

9.
两种土壤增效剂对稻田氨挥发排放的影响   总被引:7,自引:4,他引:3  
硝化抑制剂和生物炭是农田土壤管理常用的土壤增效剂.其中,硝化抑制剂可以增加作物产量提高氮素利用率,而生物炭是生物质资源利用的一种新方式,且具有一定的吸附特性.以减少稻田氨挥发带来的氮素损失及环境污染问题为目的,在原状土柱模拟试验条件下,以单施化肥处理(CN)为对照,研究了生物炭(B)添加、硝化抑制剂(CP)添加及复合添加处理(BCP)对田面水p H、田面水铵态氮浓度、水稻产量及氨挥发损失的影响.结果表明,两种增效剂施用对水稻产量无显著影响,硝化抑制剂添加有增加水稻产量的趋势.两种土壤增效剂添加均显著增加了稻田氨挥发损失,损失量占施氮量的25%~35%.其中,肥期(施肥后7 d内)氨挥发损失占总损失的86%~91%,是氨挥发损失的主要时期.与CN处理相比,CP处理明显提高了田面水NH_4~+-N浓度和氨挥发损失,基肥期、穗肥期和非肥期增加效应明显,氨挥发增幅分别为138%、48%和78%,全生育期氨挥发总损失量增加59%.生物炭添加对稻田氨挥发损失也有明显的促进效应,且具有阶段性特征,前期(基肥期和蘖肥期)的增加效应高于后期(穗肥期和穗肥后),田面水NH_4~+-N浓度和p H也表现出相同的趋势.两者配施添加处理显现出了正交互作用,氨挥发损失量大于单施处理,与化肥处理差异显著.结果说明,生物炭添加不能解决硝化抑制剂添加引起的铵态氮浓度升高和氨挥发损失增加的问题,对于硝化抑制剂添加引起的氨挥发损失增加的问题需要继续研究.  相似文献   

10.
以盐渍土壤为研究对象,通过吸附试验和室内土壤培养试验,分析生物炭及木醋液酸化生物炭与尿素配施后对盐渍土壤活性氮、脲酶活性和氨挥发的影响,为提高盐渍土壤氮素有效性提供理论和技术支撑.吸附试验表明,木醋液酸化生物炭提高了对铵态氮的吸附量,与生物炭相比,提高了2.28%~18.18%.土壤培养试验表明,与单施尿素处理相比,生物炭和木醋液酸化生物炭与尿素配施处理使土壤硝态氮、铵态氮分别减少了0.72%和25.26%、 1.11%和16.93%;提高了土壤可溶性有机氮和可溶性全氮含量.木醋液酸化生物炭与尿素配施提高了脲酶活性,而生物炭与尿素配施处理则降低了土壤脲酶活性.木醋液酸化生物炭与尿素配施处理氨挥发累积量在不同培养时期均低于单施尿素处理及生物炭与尿素配施处理,且能降低土壤的pH,而未改性的生物炭则提高了土壤pH.因此,在盐渍土区,采用木醋液对生物炭进行酸化后再与氮肥配合施用,不仅有效降低了土壤pH,提高土壤脲酶活性以及可溶性有机氮含量,还可以适当降低土壤铵态氮和硝态氮含量,减少氨挥发,有利于减少土壤无机氮素的损失和提高盐渍土壤氮素有效性.  相似文献   

11.
利用生物炭吸附面源污染水体NH4+-N并将其进行还田可实现此氮资源由水体到农田的安全有效迁移,而探索负载NH4+-N生物炭对N2O-N排放和NH3-N挥发的影响则对于减施化肥和降低土壤氮素损失意义重大.本研究采用土柱试验,设置4个处理:对照(不施氮肥,CK)、单施化肥(NPK)、负载氮+化学磷钾肥(N-BC+PK)和生物炭+化肥(BC+NPK).结果表明,相较NPK和BC+NPK处理,N-BC+PK处理N2O-N累积排放量、NH3-N累积挥发量、气态氮素累积损失量(以N计)分别显著降低了33.62%和24.64%、70.64%和79.29%、64.97%和73.75%(P<0.05).特别需要说明的是,BC+NPK处理相比NPK处理显著增加了NH3-N累积挥发量(P<0.05).综上所述,负载NH4+-N生物炭可显著减少N2O-N排放和NH3-N挥发,且其减排效果显著优于传统的生物炭化肥配施.本研究结果将为富营养化水体NH4+-N农田回用和土壤气态氮素减排提供理论依据和数据支持.  相似文献   

12.
邓华  高明  龙翼  赖佳鑫  王蓥燕  王子芳 《环境科学》2021,42(11):5481-5490
明确生物炭和秸秆还田对未利用的新垦紫色土旱坡地土壤团聚体和有机碳的影响,为三峡库区土壤改良提供科学依据.采用田间试验方法,分析不施肥(CK)、常规施肥(NPK)、优化施肥(GNPK)、化肥减量配施秸秆(RSD)和化肥减量配施生物炭(BC)处理对不同粒径土壤团聚体含量及其有机碳贡献率的影响.结果表明,施肥可提高土壤养分含量水平,尤以RSD和BC处理最为显著;各处理以<0.25 mm粒级团聚体为优势粒级,施肥能显著增加5~0.5 mm粒级团聚体含量,提高平均重量直径(MWD)、几何平均直径(GMD)和R0.25(>0.25 mm团聚体含量)值,降低分形维数(D)和土壤结构体破坏率(PAD0.25)值(P<0.05);施肥能显著提高土壤有机碳含量,其中BC (6.73 g ·kg-1)和RSD (5.45 g ·kg-1)效果显著优于NPK (5.05 g ·kg-1)和GNPK (3.63 g ·kg-1);<0.25 mm团聚体有机碳贡献率最高(34.92%~59.49%),>5 mm团聚体有机碳贡献率最低(1.55%~6.01%),BC处理显著提高了5~2 mm和2~1 mm粒级团聚体有机碳贡献率(P<0.05),而NPK、RSD和GNPK在0.5~0.25 mm贡献率提升最为显著(P<0.05);各施肥处理均能提高油菜和玉米产量,年际间差异较大,但处理间差异不显著;土壤团聚体稳定性和作物产量随土壤有机碳的增加呈上升趋势.生物炭和秸秆还田能促进土壤中,大、中团聚体形成,有效提高土壤团聚体稳定性,增加土壤有机碳含量,促进作物增产,是改良紫色土土壤结构、提升土壤质量的有效措施.  相似文献   

13.
生物质炭可影响土壤微生物量,但生物质炭对双季稻田土壤微生物生物量碳、氮(MBC、MBN)及可溶性有机碳、氮(DOC、DON)的影响还不清楚.基于此,本研究选取亚热带2种典型双季稻田土壤(花岗岩母质发育的水稻土S1和第四纪红壤发育的水稻土S2)作为研究对象,开展室内培养试验来研究不施氮肥条件下生物质炭添加对土壤微生物生物量碳、氮及可溶性有机碳、氮的影响.每种土壤设置3个小麦秸秆生物质炭添加量,即土重的0%、1%和2%,分别用CK、LB和HB表示.培养70 d后,2种水稻土的MBC均值:S1为877. 03、832. 11和849. 30 mg·kg~(-1),S2为902. 94、874. 19和883. 22mg·kg~(-1). S1+LB、S1+HB和S2+LB均显著降低了土壤MBC均值(P 0. 05),这可能是由生物质炭吸附土壤有机碳及其他有机物,阻碍了微生物的生长而造成的. S1土壤中低生物质炭添加量较对照显著降低了土壤MBN均值(P 0. 05),降幅达9. 45%.生物质炭对S1土壤MBC/MBN均值影响不明显,但LB降低了S2土壤MBC/MBN均值(P 0. 05).由于生物质炭本身含有部分可溶性有机碳及其高p H值,添加到2种水稻土中均增加了土壤DOC均值,增幅分别达4. 42%~22. 20%和10. 57%~35. 47%.但生物质炭(除S2+HB处理)显著降低了土壤DON均值,这可能归因于生物质炭对土壤有机氮的吸附作用及生物质炭本身有机碳分解过程中对N的消耗作用.生物质炭显著增加了2种水稻土的DOC/DON均值,且随着生物质炭添加量的增加而增加.综上所述,在双季稻田土壤中单施生物质炭虽然可增加土壤可溶性有机碳,但对土壤微生物量有一定的降低作用,且会加重土壤氮亏缺状况.因此,在亚热带双季稻田中生物质炭应与化肥等配合施用.  相似文献   

14.
重金属镉(Cd)污染已严重影响土壤健康,威胁农产品生产安全利用.因此采用盆栽试验,以Cd污染水稻土为供试土壤,研究生物炭(BC)、不同氮肥施用水平2.6 g·pot-1(N1)、 3.5 g·pot-1(N2)、 4.4 g·pot-1(N3)和生物炭配施氮肥(BCN1、 BCN2、 BCN3)对土壤Cd形态、水稻体内Cd富集和转运以及土壤酶活性的影响,并通过高通量测序分析土壤微生物菌群变化和微生物间复杂的相互作用关系.结果表明,生物炭配施氮肥处理下土壤Cd由活性较高的可交换态向活性低的残渣态转化,可交换态Cd含量较对照降低了6.2%~14.7%,残渣态Cd含量提高了18.6%~26.4%.单一氮肥处理增强了水稻根部Cd的富集能力,提高了22%~33.5%,单一生物炭和配施氮肥处理下水稻根部Cd的富集能力、 Cd从茎叶向稻壳和稻壳向稻米的转运系数均下降.BCN处理总体上促进了土壤酶活性(脲酶、酸性磷酸酶、蔗糖酶和过氧化氢酶),MiSeq测序显示生物炭配施氮肥提高了土壤细菌主要物种相对丰度(如Acidobacteriale...  相似文献   

15.
生物炭对塿土土壤温室气体及土壤理化性质的影响   总被引:23,自引:12,他引:11  
通过田间小区试验,分别向塿土土壤中添加0、20、40、60、80 t·hm~(-2)的苹果果树枝条生物炭后,分析了生物炭对土壤温度、土壤团聚体、NO_3~--N、NH_4~+-N、微生物量碳以及土壤温室气体排放的影响.结果表明,生物炭可以缓解土壤温度的变化,增加土壤大团聚体的数量,尤其是5 mm、5~2 mm和1~0.5 mm的团聚体数量.与对照相比,随着生物炭施用量的增加,土壤NO_3~--N、NH_4~+-N、微生物量碳分别增加了4.9%~33.9%、9.1%~41.1%和11.8%~38.5%.本研究中生物炭对土壤温室气排放的影响主要表现为:添加生物炭后,土壤CO_2的排放量以及CH_4的吸收汇分别增加了6.73%~23.35%和3.62%~14.17%;施用20 t·hm~(-2)和40 t·hm~(-2)的生物炭降低了土壤N_2O的排放和综合增温潜势(GWP),而当生物炭施用量大于等于60 t·hm~(-2)时反而增加了土壤N_2O的排放和综合增温潜势(GWP).说明生物炭作为一种土壤改良剂和碳减排剂,能够改善土壤质量,提高土壤肥力,提高农田土壤增汇减排的作用,此外,选择合适的生物炭施用量至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号