首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
谢瑞加  侯红霞  陈永山 《环境科学》2018,39(4):1484-1492
烟花爆竹燃放是大气细颗粒物(PM2.5)来源的途径之一.以泉州城区春节期间为例,研究烟花爆竹燃放对大气细颗粒物的影响,服务大气污染的特殊污染源管理.结果表明,烟花爆竹集中燃放时段,SO2、PM10和PM2.5浓度明显升高,尤以PM2.5的升高最为显著,城区PM2.5日均浓度峰值约为年均值的4倍,涂山街点位PM2.5小时浓度峰值约为城区年均值的21倍;燃放高峰期Al、Mg、Ba、Cu、Sr等烟花爆竹的特征元素占比迅速上升,Al+、Mg+、Ba+、Cu+间的小时数浓度高度相关;监测期间泉州城区细颗粒物主要污染源是烟花爆竹燃放和生物质燃烧,贡献占总颗粒物的一半以上,燃煤和工业工艺源的比例相对较低,均低于10.0%;集中燃放时段大气细颗粒物浓度高达0.578 mg·m-3,此时的烟花源的贡献比例也提升到58.2%;污染过程分析表明PM2.5浓度与烟花源的占比、数浓度的变化趋势具有趋同性.以上结果说明烟花爆竹的集中燃放是春节期间泉州大气环境恶化的主要原因.  相似文献   

2.
成都市冬季相对湿度对颗粒物浓度和大气能见度的影响   总被引:7,自引:5,他引:2  
刘凡  谭钦文  江霞  蒋文举  宋丹林 《环境科学》2018,39(4):1466-1472
利用成都市城区2015年12月的连续在线观测数据,如相对湿度(RH)、能见度、颗粒物(PM10、PM2.5和PM1)浓度、气态污染物(SO2和NO2)浓度以及PM2.5中SO42-和NO3-浓度,探讨RH对颗粒物浓度和大气能见度的影响.结果表明,高颗粒物浓度和高RH协同作用导致低能见度事件.观测阶段,PM2.5在PM10中的平均比重为64%,表明成都市冬季细颗粒物污染严重;随着RH增加,PM2.5/PM10显著增加,表明高RH会加重细颗粒物污染.随着PM2.5浓度增加,能见度呈幂指数下降;在相同PM2.5浓度下,RH越高,能见度越低.当颗粒物浓度较低时,RH对能见度的影响作用较强;当颗粒物浓度较高时,大气消光主要由PM2.5浓度控制,RH对能见度的影响减弱.当RH大于70%时,硫氧化率(SOR)和氮氧化率(NOR)的均值分别从0.27和0.11(RH小于40%)增长至0.40和0.19,表明较高RH对二次硫酸盐和硝酸盐的生成有显著的促进作用,二次硫酸盐和硝酸盐单独或协同影响空气质量.  相似文献   

3.
成都市大气细颗粒物组成和污染特征分析(2012-2013年)   总被引:18,自引:4,他引:14       下载免费PDF全文
陈源  谢绍东  罗彬 《环境科学学报》2016,36(3):1021-1031
为了解成都市大气细颗粒物的污染特征,于2012年5月-2013年5月在成都市城区开展了每6 d采集1次样品的长期颗粒物观测.利用十万分之一分析天平、热光碳分析仪、离子色谱、电感耦合等离子体质谱(ICP-MS)分别分析了颗粒物样品的质量浓度、有机碳/元素碳、水溶性离子、无机元素等,同步收集了污染物在线观测数据、气象数据和卫星遥感数据.结果表明,采样期间,成都市可吸入颗粒物(PM10)和细粒子(PM2.5)浓度颗粒物浓度分别高达(129.7±76.4)和(91.6±54.3) μg·m-3,PM2.5中以二次无机离子(SNA,43.6%)和有机物(OM,31.2%)污染最为突出,其次为土壤组分(Soil,13.8%)、元素碳(EC,5.0%)和微量元素(Trace,0.8%);1月、3月、5月和10月是污染较重的月份.通过比较揭示了不同污染源影响下的典型污染特征.生物质燃烧期间,成都城区PM2.5浓度达214.3 μg·m-3,PM2.5/PM10比达0.89,其中OM贡献增加至57.2%,K+浓度达8.7 μg·m-3,OC/EC比达8.3,SNA比重下降;而沙尘传输期间,PM2.5浓度为122.6 μg·m-3,仅占PM10浓度的0.28,PM2.5中土壤组分比例剧增至77.3%,SNA和无机元素的比重明显下降;静稳天气下PM2.5浓度为261.0 μg·m-3,各组分比重并无明显变化,硝酸盐和铵盐比例稍有增加.  相似文献   

4.
深圳市城区大气颗粒物及主要水溶性无机离子的污染特征   总被引:1,自引:0,他引:1  
基于2015年深圳市大气颗粒物和主要水溶性无机离子的观测数据,深入分析了大气颗粒物的浓度变化及二次污染特征.结果表明2015年深圳的大气颗粒物(PM10、PM2.5、PM1)浓度虽然低,但其中细粒子占比高,PM2.5/PM10的比值高达0.744,甚至大于广州典型灰霾过程中的粗细粒子比.大气颗粒物浓度季节变化明显,秋冬高,春夏低.其日变化特征明显受到交通高峰的影响,汽车尾气可能是污染来源之一.SO42-、NO3-和NH4+(SNA)质量浓度在PM2.5中的占比超过1/3(37.7%),且全年硫转化率都大于0.1,这说明深圳市细颗粒物主要来自于二次转化.深圳大气颗粒物浓度受气象要素影响显著,与气压正相关,与气温、相对湿度、降水及风速负相关;若将风速、气温、气压、相对湿度和降水作为一个整体考虑,这些气象要素对深圳大气颗粒物浓度的影响大小是PM1 > PM10 > PM2.5.本工作不仅对深圳的大气环境管理和经济可持续发展有着重要参考价值,还对空气相对清洁地区的大气颗粒物和霾治理具有指导意义.  相似文献   

5.
2013年12月我国中东部地区发生多场大范围高强度的颗粒物污染. 期间,本研究采用在线连续观测手段测量了上海市城区大气中气态污染物、颗粒物的质量浓度、细颗粒物的化学组分等,获得了浮尘污染、灰霾污染、雾霾污染、长距离传输的过境污染过程中颗粒物的污染特征变化. 观测结果显示,雾霾污染最为严重,PM10和PM2.5日均最大浓度分别达到536 μg ·m-3和411 μg ·m-3,PM2.5/PM10高达76.7%,高湿度加强了大气颗粒物中NO3-、SO42-、NH4+等二次组分的生成. 浮尘污染中PM2.5的Ca2+浓度在所有污染过程中最高,且PM2.5中一次组分比重明显上升. 长距离传输的过境污染中PM2.5的SO42-浓度最高,且增长速度很快. 同时本研究还采用Hysplit反向轨迹结合聚类分析方法,得到了不同污染过程中到达上海的主要气团轨迹,并结合上海城区在线观测的PM2.5及其化学组分浓度数据,探讨了不同气团下PM2.5组分特征差异和不同污染过程的大致来源. 结果表明,观测期间上海的气团轨迹可以聚类为六类. 其中,移动速度快的cluster6出现时,上海市不易出现颗粒物污染; 始于蒙古的cluster2和cluster3导致上海出现沙尘污染,该气团下PM2.5/PM10的比例都较低,且PM2.5中Ca2+浓度较高. 移动缓慢的cluster5和cluster4有利于污染物的二次生成,静稳天气同时加剧了污染物的累积,加上他们经海上夹带水汽传输至上海,这些不利条件是导致上海出现严重污染的关键因素.  相似文献   

6.
PM2.5与PM10的时空分布特征及其相关性是大气颗粒物研究的主要内容,传统方法是基于监测站点数据进行分析,难以揭示PM2.5与PM10时空分布的区域特征.为此,本文利用地理加权回归模型估算了2016年新疆地区PM2.5与PM10的月均浓度,在此基础上对区域尺度的PM2.5与PM10浓度特征进行分析.结果表明:地理加权回归相较最小二乘回归的拟合精度更高,PM2.5和PM10的决定系数分别为0.93和0.96,且误差较小;PM2.5和PM10年均浓度分别为70.88 μg·m-3和194.53 μg·m-3,说明大气颗粒物污染严重,且空间分布呈西南高、东北低的特征;PM2.5和PM10季节浓度均为春季最高,夏季最低;PM2.5月均浓度2月最高,9月最低,PM10月均浓度3月最高,8月最低;PM2.5与PM10年均浓度的相关系数r为0.95,相关性较高;PM2.5/PM10冬季最高为51%,其余季节小于50%,说明冬季PM2.5对大气颗粒物污染贡献率较高,其余季节则以可吸入颗粒物中的粗颗粒贡献为主.  相似文献   

7.
北京市城区两个典型站点PM2.5浓度和元素组成差异研究   总被引:7,自引:2,他引:5  
采用rp TEOM® 1400a颗粒物测定系统,于2008年1月到2010年12月,对北京城市生态系统研究站和北京教学植物园周边大气中细颗粒物(PM2.5)的浓度进行了连续监测.2010年,利用rp TEOM1400系统的旁路采样器同步采集PM2.5样品,经微波消解后采用ICP-MS和ICP-OES方法测定样品中的Al、As、Ca、Cd、Co、Cr、Cu、Fe、K、Mg、Mn、Na、Ni、Pb、Se、V、Zn等17种元素的浓度.结果表明,2008年1月至2009年3月,北京城市生态系统研究站的PM2.5平均浓度为59.1 μg·m-3,比北京教学植物园低36%.2009年4月至2010年12月,北京城市生态系统研究站的PM2.5平均浓度为95.5 μg·m-3,比北京教学植物园高60%.施工工地的土方作业可能对两站点PM2.5浓度的差异有重要贡献.地壳元素Al、Fe、Mg、K、Ca、Na浓度在两站点的差异最大.北京城市生态系统研究站其余污染元素的富集因子一般也高于北京教学植物园,尤其是Pb、As元素,可能与被污染土壤和建筑物等的二次污染有关.两站点的PM2.5污染状况均在建筑施工期较严重,来自地表和建筑工地的扬尘可能是造成PM2.5污染严重的主要原因.  相似文献   

8.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

9.
典型沿海城市采暖期细颗粒物组分特征及来源解析   总被引:6,自引:6,他引:0  
李明燕  杨文  魏敏  朱红晓  刘厚凤 《环境科学》2020,41(4):1550-1560
为明确威海市采暖期细颗粒物的组分及来源,于2018年1~3月在威海市3个空气质量例行监测点采集了环境空气PM2.5样品,分析OC、EC、水溶性离子及元素组分特征,利用PMF模型解析PM2.5的来源.结果表明,采样期间威海市PM2.5日均质量浓度为(33.80±22.45)μg·m-3,NO3-、NH4+、SO42-、OC和EC是其主要组分.作为沿海城市其Cl-占比相对较高,同时PM2.5组分特征体现出颗粒物成分受本地工业特征污染物排放的影响.NO3-/SO42-和OC/EC比值均表明威海市采暖期移动源对PM2.5贡献大;水溶性离子中酸碱离子比例分析表明,威海市采暖期PM2.5呈弱碱性,NH4+过量,主要以NH4NO3和(NH42SO4等形式存在.污染时段威海市二次污染物浓度上升明显,主要组分NH4+、NO3-、SO42-、OC和EC质量浓度是清洁时段的4.21、5.27、3.23、2.02和1.81倍.源解析结果表明,二次气溶胶占PM2.5的32.4%~36.0%,移动源(15.6%~18.9%)、燃煤源(12.1%~17.8%)、生物质燃烧源(9.0%~10.4%)和扬尘(8.6%~11.3%)是威海市环境空气PM2.5的主要来源,而工艺过程源(2.1%~8.3%)、非道路移动源(2.4%~3.7%)和海盐(3.5%~5.6%)贡献比例较小.  相似文献   

10.
邯郸市大气颗粒物污染特征的监测研究   总被引:6,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

11.
为研究天津市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,于2015年4月采集天津市道路扬尘样品,利用再悬浮采样器将采集的样品悬浮到滤膜上,用离子色谱仪分析其水溶性无机离子组分,利用相关分析和比值分析及主成分法对其污染特征和来源进行探讨.结果表明,天津市8种水溶性无机离子占道路扬尘PM_(2.5)的6.13%±2.32%;不同道路类型道路扬尘PM_(2.5)中水溶性无机离子总量差异较大.相关性分析表明Na~+、K~+、Mg~(2+)和Ca~(2+)这4种离子同源性较高.NO_3~-/SO_4~(2-)比值显示固定源对天津市春季道路扬尘PM_(2.5)的影响更为显著.通过主成分分析法可知,天津市春季道路扬尘PM_(2.5)主要来源于燃煤源、移动源、生物质燃烧源和建筑施工扬尘.  相似文献   

12.
重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年春季采集了重庆主城区和缙云山共6个环境采样点的大气PM10、PM2.5样品,同步采集了燃煤尘、机动车尾气尘、施工机械尾气尘、船舶尾气尘、餐饮油烟尘、生物质燃烧尘及土壤尘等7类污染源,采集到有效受体样品139个、有效源样品233个,使用GC-MS分析样品中18种PAHs的质量浓度(ρ),分析了PM10、PM2.5上载带PAHs的污染特征,并分别运用比值法、主成分分析法及CMB(化学质量平衡)受体模型法对PM10、PM2.5中的PAHs进行来源解析,所得源解析结果较为一致. 结果表明:重庆主城区大气PM10、PM2.5中ρ(PAHs)较低,ρ(PAHs)分别为22.03~31.71、19.02~29.92 ng/m3,其中位于工业区新山村采样点的ρ(PAHs)最高. PM10载带的PAHs有86%~99%集中在PM2.5中,说明PAHs主要富集在PM2.5中. 重庆主城区大气PM10、PM2.5载带的PAHs主要来自机动车尾气尘和燃煤尘的贡献,这2类源对PM10的贡献率分别为25.89%、32.80%;而在PM2.5中,机动车尾气尘的贡献率较高,可达62%左右.   相似文献   

13.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

14.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   

15.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

16.
张伟  姬亚芹  张军  张蕾  王伟  王士宝 《环境科学》2017,38(12):4951-4957
为了解辽宁省典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,分别于2014年和2016年采集了鞍山市和盘锦市道路扬尘样品,利用再悬浮采样器将其悬浮到滤膜上,用离子色谱仪分析了其中的水溶性无机离子组分,分别用相关分析法和比值法分析了其污染特征,用主成分法初步解析了其主要污染源.结果表明,盘锦市和鞍山市8种水溶性无机离子分别占道路扬尘PM_(2.5)的5.83%±3.34%和5.84%±1.15%.盘锦市NH_4~+与SO_4~(2-)和NO_3~-的结合方式主要为(NH_4)2SO_4和NH_4NO_3,鞍山市NH_4~+与SO_4~(2-)和NO_3~-的主要结合方式为NH_4HSO_4和NH_4NO_3.盘锦市和鞍山市道路扬尘PM_(2.5)中NO_3~-/SO_4~(2-)的均值分别为0.52±0.55和0.46±0.13,表明固定源(燃煤)对其道路扬尘PM_(2.5)的影响较显著.盘锦市道路扬尘PM_(2.5)主要来源于生物质燃烧源、海盐粒子、建筑水泥尘和机动车尾气;鞍山市道路扬尘PM_(2.5)主要来源于燃煤源、生物质燃烧源、海盐粒子和钢铁冶炼尘.  相似文献   

17.
为研究云南城市道路扬尘PM2.5中重金属含量、来源和其健康风险,分别在昆明、保山、文山、昭通和玉溪这5个典型城市区域采集道路扬尘样品,使用颗粒物再悬浮技术将尘样悬浮并采集PM2.5,利用ICP-MS检测PM2.5中铬(Cr)、锰(Mn)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、镉(Cd)和铅(Pb)等8种重金属.结果表明,5城市道路扬尘Cr、 Ni、 Cu、 Zn和Pb含量均严重超过云南土壤背景值;富集因子表明,云南5城市道路扬尘PM2.5中重金属多数表现为中度富集和强烈富集,受人为活动影响较大.相关性分析和主成分分析结果表明,云南省不同类型城市道路扬尘PM2.5中重金属均受土壤源和交通源影响;其余来源差异性较大:昆明受钢铁冶炼源影响、保山和玉溪受有色金属冶炼源影响、昭通受燃煤源影响.健康风险分析表明:昆明、玉溪和昭通的道路扬尘PM2.5中Cr、 Pb和As存在儿童非致癌风险,昆明市的Cr还存在终身致癌风险.  相似文献   

18.
基于重庆本地碳成分谱的PM2.5碳组分来源分析   总被引:13,自引:10,他引:3  
为了解重庆主城PM2.5中碳组分特征和来源,2012-05-02~2012-05-10日在商业区、工业区和居民区进行了PM2.5采样.利用TOR方法分析了8种碳组分,对3个不同功能区大气环境PM2.5以及燃煤尘、尾气尘(机动车尾气、船舶尾气、施工机械尾气)、生物质燃烧尘、餐饮油烟尘这6类源PM2.5中的8种碳组分进行了特征分析.在源的碳成分谱基础上,利用化学质量平衡(CMB)模型得到重庆本地PM2.5的碳来源指示组分,利用因子分析法解析出各类源对不同功能区内PM2.5碳组分的贡献率.结果表明,重庆地区燃煤尘、机动车尾气尘、船舶尾气尘、施工机械尾气尘、生物质燃烧尘、餐饮油烟尘的OC/EC值分别为6.3、3.0、1.9、1.4、12.7和31.3.EC2、EC3的高载荷指示柴油车尾气排放,OC2、OC3、OC4、OPC的高载荷指示燃煤排放,OC1、OC2、OC3、OC4、EC1指示汽油车尾气排放,OC3指示餐饮业排放,OPC指示生物质燃烧排放.商业区OC/PM2.5为17.4%,EC/PM2.5为6.9%,估算得到,二次有机碳(SOC)/OC为40.0%;工业区OC/PM2.5为15.5%,EC/PM2.5为6.6%,SOC/OC为37.4%;居民区OC/PM2.5为14.6%,EC/PM2.5为5.6%,SOC/OC为42.8%.工业区PM2.5中碳组分的主要来源为燃煤和汽油车尾气、柴油车尾气;商业区PM2.5中碳组分的主要来源为汽油车尾气、柴油车尾气和餐饮业油烟;居住区PM2.5中碳组分的主要来源为汽油车尾气、餐饮业油烟、柴油车尾气.  相似文献   

19.
王成  闫雨龙  谢凯  李如梅  徐扬  彭林 《环境科学》2020,41(3):1036-1044
采集了阳泉市城区2017年10月15日~2018年1月23日PM_(2.5)样品,分析了优良天和污染天PM_(2.5)及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM_(2.5)进行来源分析.结果表明,采样期间污染天二次无机离子(SO_4~(2-)、 NO~-_3和NH~+_4)在PM_(2.5)中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM_(2.5)的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM_(2.5)的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动车排放对PM_(2.5)贡献较优良天上升,燃煤源对PM_(2.5)贡献有下降.因此,阳泉市在秋冬季应加强对燃煤、扬尘源的控制,同时进一步加强对机动车的控制,以减少污染期间机动车的贡献.  相似文献   

20.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号