首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对潘二矿现有矿井水处理利用与供暖方式存在的问题,分析了传统燃煤小锅炉对空气环境的污染,论证了矿井水热能替代燃煤锅炉供暖和矿井生产的可行性。分析认为:利用矿井疏放奥灰水提取热能替代燃煤锅炉采暖和矿井生产供热,可充分利用矿井水余热资源;以潘二矿为例,采用奥灰水热能替代现有燃煤锅炉供暖,每年可节省运行费用601.2万元,减少的烟尘、SO_2、NO_x排放量分别280 t、40 t和60 t。  相似文献   

2.
以潘集选煤厂为例,总结了传统供暖方式及煤泥烘干工艺的潜在问题,分析了电厂余热蒸汽替代燃煤锅炉进行供暖和生产的可行性。分析认为:潘集选煤厂如利用电厂蒸汽进行供暖和煤泥烘干,工程总投资3 898. 74万元,可减少燃煤锅炉运行费用634. 3万元/t,可减排烟尘280 t/a、二氧化硫40 t/a、氮氧化物60 t/a。  相似文献   

3.
吉林省是国家重要的粮食生产基地,具有丰富的秸秆资源,利用秸秆生物资源可以变废为宝,制造出秸秆生物燃料既可以缓解燃烧秸秆产生的空气污染,也可以替代燃煤解决城市小锅炉因燃煤产生的空气污染问题。运用经济效益分析、环境效益分析和生物质燃料锅炉监测结果充分论证使用秸杆生物燃料锅炉替代燃煤小锅炉的可行性。替代方案即符合国家的产业政策也能实现资源再利用,降低锅炉烟尘和二氧化硫排放,对控制城市大气污染节能减排起到积极作用。  相似文献   

4.
燃煤工业和生活锅炉(下称燃煤锅炉)是京津冀地区大气污染控制的重点,分析其污染物排放特征对燃煤锅炉的污染控制具有重要意义. 对京津冀地区燃煤锅炉的容量、锅炉种类、除尘方式、实际除尘效率等技术分布信息进行了统计,在此基础上建立了基于技术分布信息的2012年京津冀地区燃煤锅炉大气污染物排放清单,并分析了技术特征对燃煤锅炉大气污染物排放的影响. 结果表明:京津冀地区燃煤锅炉以10 t/h及以下的小容量锅炉为主,主要炉型为层燃炉,除尘方式以湿式除尘及多管旋风除尘为主;2012年京津冀地区燃煤锅炉的SO2、NOx、颗粒物、PM10和PM2.5排放量分别为90.81×104、30.88×104 、31.46×104、14.64×104和8.07×104 t,排放主要集中于10 t/h及以下和35 t/h以上的锅炉;天津、石家庄、保定、唐山是锅炉污染物排放量最大的城市;供热、食品、化工、造纸是燃煤锅炉排放最集中的行业. 京津冀地区不同城市锅炉的容量及行业分布差异明显,各城市对燃煤锅炉应因地制宜采取天然气替代、集中供热等措施,以控制燃煤锅炉的污染物排放.   相似文献   

5.
本文分析了呼市大气环境质量现状及污染特征,对平房,楼房,采暖锅炉等各类源的燃煤量及污染物排放量进行了统计分析,对推广民用型煤及采暖锅炉型煤从经济投入和环境效益等方面进行了探讨。分析表明:全面推广民用型煤和采暖锅炉型煤可分别减少全市现状烟尘排放量的15.9%和14.4%.万元投产效益,采暖锅炉型煤方案将明显高于民用型煤推广方案。  相似文献   

6.
北京市燃煤源排放控制措施的污染物减排效益评估   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析北京市燃煤源排放控制措施的污染物减排效益,基于MEIC(中国多尺度排放清单模型),采用情景分析法,评估了北京市电厂能源清洁化与末端治理、燃煤锅炉改造和城区平房区居民采暖改造等措施的污染物减排效益.结果表明,相对于无控情景,2013年北京市电厂能源清洁化与末端治理减少PM2.5、PM10、SO2和NOx排放量为1.28×104、2.10×104、5.13×104和4.98×104 t,分别占无控情景的85%、86%、87%、74%;北京市燃煤锅炉改造减少PM2.5、PM10、SO2、NOx排放量为1.09×104、2.68×104、11.64×104和5.81×104 t,分别占无煤改气情景的83%、89%、83%、83%;北京市老旧平房区的居民采暖改造减少PM2.5、PM10、SO2和NOx排放量分别为630、870、2 070和790 t,均占无煤改电情景的8%.研究显示,北京市从1998年开始采取的各种减排措施有效地减少了污染物的排放,对北京市空气质量改善具有重要意义.   相似文献   

7.
以乌鲁木齐市某集中供热站锅炉节能减排方案为例,通过建立供热锅炉实施方案综合评价指标体系,运用层次分析法确定方案各项指标权重,利用模糊综合评判法分别从锅炉燃煤、燃气情况下的环境效益、经济效益以及设施能耗、物耗等指标着手,进行综合评价,并对集中供热锅炉燃煤与燃气方案综合评判结果进行分析,最终评选出较优实施方案。评选结果表明:燃气方案综合效益较好,可有效实现节能减排,为今后燃气锅炉建设提供一定的参考作用。  相似文献   

8.
我国电力行业CO2排放量巨大,约占全国CO2排放总量的50%. 有效降低电力行业的碳排放,对我国按时实现“3060”碳达峰与碳中和的目标将起到有力支撑. 石油和天然气开采过程中产生的油基岩屑因含有较高的热值可作为锅炉煤炭燃料的替代燃料使用. 为探明利用燃煤锅炉协同处置油基岩屑的碳减排效果,选取某电站600 MW循环流化床锅炉,以30%的比例掺烧油基岩屑,并参照《温室气体排放核算与报告要求 第1部分:发电企业》和《企业温室气体排放核算方法与报告指南 发电设施(征求意见稿)》两种核算方法计算协同处置前后锅炉CO2的排放量. 结果表明:①在30%的掺加比下,油基岩屑协同处置具有碳减排效果. 两种核算方法计算的降碳量分别为159.2和157.7 t,降碳比分别为0.543和0.538. ②油基岩屑焚烧产生的CO2排放量小于被替代的煤炭燃烧产生的碳排放量,是协同处置具有碳减排效益的主要原因. ③核算法与检测法CO2排放量的差异表明,企业源评估模型碳核算法最主要的不确定性来源于检测数据的精准度. 研究显示,燃煤锅炉协同处置油基岩屑具有一定的CO2减排效果,单位热值含碳量和消耗量是影响碳减排效果的两个关键因素,建议开展油基岩屑掺加比与碳减排量间的相关性研究,为规模化开展燃煤锅炉协同处置降碳工作提供参考.   相似文献   

9.
基于我国燃煤锅炉的技术特征和国内外排放清单编制技术方法,建立了燃煤锅炉PM_(2.5)减排潜力计算方法,以2012年为基准年,设计了3种控制情景,对2020年京津冀地区燃煤锅炉PM_(2.5)减排潜力进行预测和分析.结果表明:2012年京津冀地区燃煤锅炉PM_(2.5)排放量为7.83×l0~4t,随着控制措施的不断加严,PM_(2.5)排放量逐渐减少,一般控制情景、重点区域控制情景和加严控制情景下2020年京津冀地区燃煤锅炉PM_(2.5)排放量分别为1.25×l0~4t、0.58×l0~4t和0.18×l0~4t,相对于基准年而言,分别减少6.6×10~4t、7.2×10~4t和7.6×10~4t;减排比例分别达到84.0%、92.6%和97.7%.各城市燃煤锅炉PM_(2.5)减排潜力与锅炉耗煤量、锅炉规模分布、用煤灰分、除尘技术应用情况等有关,京津冀地区pm_(2.5)减排潜力最大的城市是天津市,河北省减排潜力最大的城市是石家庄市;在加严控制情景下,唐山市、北京市、保定市和秦皇岛市的PM_(2.5)减排潜力均超过了0.5×l0~4t.  相似文献   

10.
采用湍流循环燃烧炉芯板技术和燃煤锅炉自动监测控制技术,对现有中小型燃煤锅炉进行节能技术改造,可以有效提高锅炉热效率,降低锅炉煤耗和电耗,减少锅炉的大气污染物排放量,达到节能、降耗、减污、增效的经济和环境综合效益。  相似文献   

11.
本研究建立了基于人工神经网络的民用散煤燃用量估算模型,得到了京津冀地区“以电代煤”替代民用散煤大气污染物排放清单.结果表明:截止到2018年,京津冀地区“以电代煤”替代散煤用户约259万户,每年可减少散煤燃烧约706.6万t,减少PM2.5、NOx、SO2的排放量分别约为2.81,0.76,2.17万t.其中,北京市和天津市实施效果较为明显,占京津冀地区“以电代煤”散煤替代总量的62.01%和22.82%.基于调研数据得到京津冀各市燃煤量月分布系数,1月份分布系数最大,燃煤量占比为27%~40%.  相似文献   

12.
我国城市天然气替代燃煤集中供暖的大气污染减排效果   总被引:3,自引:0,他引:3  
基于国家发改委“天然气利用政策”中的天然气利用领域,利用等热值替代方法计算不同领域天然气替代后的污染物减排效果,从大气污染减排角度对天然气各个利用领域的优先次序重新排列,并对2010年全国15个重点供暖城市天然气替代燃煤集中供暖的大气污染物减排量进行测算.结论表明:天然气集中供暖的大气污染减排效果排序处于前列,城市利用天然气替代燃煤集中供暖对CO2、颗粒物(PM)、SO2和NOx都有较明显的减排效果.2010年我国15个重点城市如果采用天然气集中供暖,共可减少CO2排放量2190.71万t、颗粒物(PM)排放量734.24万t、SO2排放量40.21万t、NOx排放量22.56万t.  相似文献   

13.
太原市多环芳烃(PAHs)排放清单与分布特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
根据太原市11种主要排放源的排放因子和活动量数据,估算了美国国家环境保护局(US EPA)优先控制污染物清单中16种多环芳烃(PAHs)的年排放量.结果表明2010年太原市16种PAHs的排放量约为332.10t,其中7种致癌性PAHs排放总量为35.11t.从排放源看,生活燃煤和炼焦煤是太原市排放PAHs的主要来源,占总排放量的65%以上.从各地区的PAHs排放情况看,排放量最大的地区是清徐县(87t/a),占总排放的27%.其次为古交市(54t/a)、晋源区(44t/a)、尖草坪区(40t/a).各地区人均收入与单位GDP排放量之间呈负相关 (R2=0.727);各地区PAHs排放量与农村人口之间呈正相关(R2=0.813),从排放谱看,排放以低环PAHs为主(81%),致癌性PAHs占总排放量的10.6%.结果表明,太原市PAHs的排放与太原市特殊的能源结构和人群结构有关.  相似文献   

14.
我国SO2减排构想与经济分析   总被引:11,自引:3,他引:8       下载免费PDF全文
对我国未来燃煤SO2排放数量进行了测算,设计了一个SO2减排方案,并对减排成本进行了经济分析。据测算,2000年燃煤SO2排放量将达到2163万t,减排44万t,减排成本为12.99亿元;2010年燃煤SO2排放量将达到2613万t,减排1448万t,减排成本为285.10亿元。   相似文献   

15.
为落实中央和天津市关于节能减排的各项政策.天津市电力公司制定并启动了“以大代小”的替代发电(大容量机组替代小火电机组)实施方案,2007年首批替代电量将达到55亿kW·h,全年可节约标准煤5.7万t,减少SO2排放量450t。[第一段]  相似文献   

16.
水泥行业是主要的CO2排放行业,2020年我国水泥行业CO2排放占全国排放总量的12%,占全国工业过程排放的60%以上. 为开展水泥行业碳达峰路径研究,提出了基于社会、经济等影响因素的多因素拟合分析模型以及基于主要下游产业的需求预测方法,对2021—2035年我国水泥熟料及水泥产量进行预测;并通过对水泥行业碳排放特征的分析,考虑主要控制措施的可行性,构建我国水泥行业CO2排放情景,对2021—2035年水泥行业CO2排放趋势进行测算,在此基础上分析水泥行业碳达峰路径及相关政策建议. 结果表明:①中国水泥熟料消费量在“十四五”期间仍有一定上升空间,随着经济社会的绿色转型,水泥市场需求在“十五五”时期下降. ②在此基础上,通过全面加强产能控制、加大落后产能淘汰力度、推广高效节能技术、积极推进原燃料替代,可推动水泥行业碳排放于“十四五”中期达峰,峰值为13.8×108~14.2×108 t,经过2~3年的峰值平台期后呈持续下降趋势,2030年水泥行业碳排放量将较2020年下降15%~18%. ③2030年,水泥熟料及水泥产量的下降将带动水泥行业碳排放量较2020年减少1.4×108 t. 在各项技术措施中,节能改造是CO2减排潜力最大的措施,2030年能效提升可带动水泥行业CO2排放量较2020年减少0.38×108 t;其次是利用固体废物替代燃煤,可带动行业CO2排放量较2020年减少0.17×108 t. 研究显示,推动我国水泥行业碳达峰及碳减排,需在加强产量控制避免水泥过度消费的基础上,聚焦节能改造和原燃料替代措施.   相似文献   

17.
文章提出了一种新型环保型太阳能吸收式制冷空调系统。首次提出把太阳能制冷机的集热器安装在河流上,把冷凝器、吸收器浸泡在河水中;利用水的自然对流,与冷凝盘管中的制冷剂发生对流换热;节能又节约了水资源。应用制冷理论,对集热面积为180m2的空调系统进行了性能分析及环境效益评价,结果表明:空调系统比电压缩式空调系统可节约运行费用13595.6元/a;寿命期减少CO2总排放量275.4t,对环境空气温度无影响,缓减了城市热岛效应,节省了引发热岛效应的附加能耗约29%,节能及环境效应显著;性能系数比冷却水塔式太阳能吸收式空调系统高6.1%。  相似文献   

18.
简讯     
协庄矿用地热资源替代燃煤锅炉新汶矿业集团协庄煤矿通过技术创新,采用井下水资源,替代燃煤锅炉,来满足副立井井口供暖,取得了较好效果,不仅节约了煤炭资源,还减少燃煤带来的环境污染。该矿副付立主要担负着人员和物料的输送,冬季要求井口温度在2℃以上。过去,主要用2台4 t的燃煤锅炉提供130℃的蒸汽,用换热器进行热交换,送到井口供暖。当冬季室外温度在-10℃以下时,该系统就不能满足井口供暖需求。另外,由于燃煤,还污染环境。为此,该矿引进三台清华同方股份有限公司提供的SGHP900A型水源热泵机组,总制热量为4 630 kW,取代燃煤锅炉供暖方…  相似文献   

19.
本文对烟气脱硝技术在中小型燃煤循环流化床锅炉的适用情况进行分析与讨论。以65T/H燃煤循环流化床锅炉为例,研究中小型燃煤循环流化床锅炉SNCR烟气脱硝工艺技术方案,并对中小型燃煤循环流化床锅炉SNCR烟气脱硝技术的经济效益及环境效益进行分析。  相似文献   

20.
为响应国家节能减排的号召,进一步降低运营成本,某钢铁集团公司在2013年至2014年初对现有的一座1000m3的高炉进行节能改造。改造后高炉能耗由过去的460kgce/t降低为391.31kgce/t,吨铁二氧化碳排放量由2.59t CO2/t(铁)降低为1.73t CO2/t(铁),回收电量由16.3k Wh/t增加为50.7 k Wh/t。本次改造大幅度的降低了高炉的能源消耗和二氧化碳的排放量,创造了良好的经济效益和环境效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号