首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrology and the pattern of sediment and nutrient loss through water that may occur under ‘slash and burn’ agriculture (jhum) at the time of cropping, as well as during the subsequent fallow development, was studied at higher elevations of Meghalaya, north-eastern India and compared with terrace cultivation. A comparison of an agro-ecosystem under a 10-year jhum cycle with that under a 5-year cycle suggests that the loss of sediment, water and nutrients such as nitrogen and phosphorus is greater under the latter, though cationic losses show a reverse trend. All losses were markedly reduced during fallow development during secondary succession. Terrace cultivation resulted in a general reduction of water and nutrient loss. However, these losses increased during the second year of terrace cultivation.While jhum cannot be sustained with the shorter cycle introduced in recent times, terracing does not seem to offer an alternative.  相似文献   

2.
Labile soil C and N play vital roles in soil–plant nutrient dynamics, especially in the low input cropping system and are vulnerable to perturbation. Surface (0–0.15 m) soils from three land clearing methods (slash and burn, bulldozed non-windrowed and bulldozed windrowed) and each with two cropping systems (5-and 4-year cropping/2-year cassava fallow) were collected in the humid forest ecosystem of Nigeria.The soils were analysed for total C and N, microbial biomass C and N (SMB C and N), particulate organic matter C and N (POM C and N), water-soluble C, potentially mineralizable N (PMN) and mineral N. The size of the labile C and N and their relative contributions to the organic C and total N differed significantly among land clearing methods, irrespective of the cropping system. Soils under slash and burn had a significantly (p > 0.05) higher particulate organic matter C, N (10.80 and 0.16 g kg−1, respectively) and microbial biomass C and N (1.07 and 0.12 g kg−1) compared to the bulldozed windrow, regardless of the cropping system. Four years cropping/2-year cassava fallow resulted in a significant higher labile C and N, relative to 5-year cropped plots across the land clearing methods. Effect of the treatments on the concentration of PMN and mineral N mirrored the SMB N and POM N. However, the quantity of most of the labile C and N pool and crop yield obtained from the slash and burn and bulldozed non-windrowed treatment did not differ significantly. Hence, bulldozed non-windrowed clearing could be a viable alternative to slash and burn in the case of large-scale farming in ensuring reduced losses of soil organic matter and nutrient during land clearing in the humid tropics.  相似文献   

3.
日光温室夏季休闲期间大水漫灌和高温闷棚是普遍的土壤处理措施,该过程灌水多、温度高,对氮素循环影响大.为了探明休闲期间土壤管理对氮素保持与损失的影响,通过田间试验揭示夏季休闲期间大水漫灌、高温闷棚对不同灌溉施肥模式(滴灌、漫灌)和不同有机物料还田处理(单施有机肥、有机肥配施小麦秸秆、有机肥配施玉米秸秆)土壤可溶性氮的影响.结果表明:作物收获后,滴灌和漫灌各处理平均w(矿质氮)分别为103.9和68.6 mg/kg,大水漫灌使滴灌0~30 cm土层w(矿质氮)显著降低30%,漫灌w(矿质氮)变化不大.日光温室夏季休闲期w(SON)(SON为可溶性有机氮)为16.3~69.1 mg/kg,SON相对含量为15%~48%.大水漫灌使滴灌和漫灌w(SON)分别显著增加2.9和2.5倍;高温闷棚使滴灌和漫灌w(SON)显著降低107.1和72.4 kg/hm2,降幅分别为41%和34%,同时w(矿质氮)分别显著增加117.9和126.7 kg/hm2,土壤氮素矿化速率分别为1.7和1.8 mg/(kg·d).与单施有机肥相比,长期有机肥配施玉米或小麦秸秆可显著增加滴灌w(矿质氮),但对w(SON)无影响.综上,休闲期间的土壤管理对土壤表层氮素含量的影响较大,其中大水漫灌容易造成滴灌残留氮素的大量损失,而随后的高温闷棚加速了SON的矿化.   相似文献   

4.
Earthworm and termite diversity were studied in 12 long-term agricultural field trials across the sub-humid to semi-arid tropical zones of Eastern and Western Africa. In each trial, treatments with high and low soil organic C were chosen to represent contrasts in long-term soil management effects, including tillage intensity, organic matter and nutrient management and crop rotations. For each trial, a fallow representing a relatively undisturbed reference was also sampled. Earthworm taxonomic richness decreased in the direction fallow > high-C soil > low-C soil and earthworm abundance was higher in fallow than under continuous crop production. Termite abundance was not significantly different between fallow and high and low-C treatments and termite taxonomic richness was higher in fallow soil than in the two cropping systems. We concluded that fewer species of earthworms and termites were favored under agricultural management that led to lower soil C. Results indicated that the soil disturbance induced by continuous crop production was more detrimental to earthworms than to termites, when compared to the fallow.  相似文献   

5.
Productivity of maize–pigeonpea cropping systems is dependent on facilitative and competitive interactive effects on resource availability. Controlling these interactions may benefit farmers through increased productivity associated with optimized crop yields. Previous research on maize–pigeonpea culture in Sub-Saharan Africa has focused on yield and soil fertility, but provided inadequate information on the mechanisms of possible interspecific competition. We employed a factorial field experiment to examine yield and nutritional responses of maize and pigeonpea to cropping systems (sole maize, intercropping, and improved fallow), N and P fertilizer additions, and cattle manure additions in Dodoma, Tanzania. The study objectives were to assess competition between crops and to determine how manure or fertilizer inputs may mitigate such interactions to improve yields. Intercropping enhanced maize yield over sole maize only when fertilized, reflecting probable nutrient competition. Improved fallows alone or with fertilizers (1.2–1.6 Mg ha−1) increased maize yields over sole maize (0.6 Mg ha−1). These increases were attributed to pigeonpea facilitation through soil nutrient replenishment, reduced competition associated with sequential cropping arrangements, and added nutrients from fertilization. Combined fertilizer and manure applications also improved maize and pigeonpea yields. Plant nutrient diagnosis indicated primary and secondary P and Ca deficiencies, respectively associated with P-fixation and leaching of cations due to high soil acidity and exchangeable Al. Maize competed strongly in mixture suppressing biomass and grain yields of the unfertilized pigeonpea by 60% and 33%, respectively due to limited soil nutrients and/or moisture. These yield reductions suggest that the intercropped pigeonpea did not recover from competition after maize harvesting that reduced competition. Optimizing yields of both maize and pigeonpea would require the addition of prescribed fertilizer when intercropped, but applications can be reduced by half under the improved fallow system due to alleviating interspecific competition.  相似文献   

6.
Understanding changes in soil chemical and biological properties is important in explaining the mechanism involved in the yield increases of cereals following legumes in rotation. Field trials were conducted between 2003 and 2005 to compare the effect of six 2-year rotations involving two genotypes each of cowpea (IT 96D-724 and SAMPEA-7) and soybean (TGx 1448-2E and SAMSOY-2), a natural bush fallow and maize on soil microbial and chemical properties and yield of subsequent maize. Changes in soil pH, total nitrogen (Ntot), organic carbon (Corg), water soluble carbon (WSC), microbial biomass carbon (Cmic) and nitrogen (Nmic) were measured under different cropping systems. Cropping sequence has no significant (P > 0.05) effect on soil pH and Corg, while WSC increased significantly when maize followed IT 96D-724 (100%), SAMPEA-7 (95%), TGx 1448-2E (79%) and SAMSOY-2 (106%) compared with continuous maize. On average, legume rotation caused 23% increase in Ntot relative to continuous maize. The Cmic and Nmic values were significantly affected by cropping sequence. The highest values were found in legume–maize rotation and the lowest values were found in fallow–maize and continuous maize. On average, Cmic made up to 4.8% of Corg and Nmic accounted for 4.4% of Ntot under different cropping systems. Maize grain yield increased significantly following legumes and had strong positive correlation with Cmic and Nmic suggesting that they are associated with yield increases due to other rotation effects. Negative correlation of grain yield with Cmic:Nmic and Corg:Ntot indicate that high C:N ratios contribute to nitrogen immobilization in the soil and are detrimental to crop productivity. The results showed that integration of grain legumes will reverse this process and ensure maintenance of soil quality and maize crop yield, which on average, increased by 68% and 49% following soybean and cowpea, respectively compared to continuous maize.  相似文献   

7.
杨阳  李海亮  马凯丽  虞凡枫  牛世全 《环境科学》2023,44(11):6387-6398
为探究连作对党参根际土壤理化性质、土壤微生物活性和群落特征的影响.以休耕5 a再种植党参的地块(CK)和不同连作年限的党参种植田为研究对象,采用Illumina高通量测序技术结合土壤理化性质分析,探讨了党参根际土壤理化性质、微生物活性和微生物群落特征对连作年限的响应.结果表明,党参根际土壤有机碳、全磷、全氮和盐分的含量随着连作年限的延长而增加,而土壤pH值则随着连作年限的延长而降低.较CK处理,连作1 a、 2 a、 3 a和4 a的党参根际土壤有机碳含量分别增加了11.1%、 80.5%、 74.9%和78.2%,全磷含量分别增加了11.8%、 52.9%、 66.7%和78.4%,全氮含量分别增加了31.3%、 68.8%、 52.1%和56.3%.连作3 a和4 a时土壤盐分含量显著增加,较CK处理,土壤电导率分别增加了54.2%和84.7%.根际土壤中微生物生物量碳氮比随着连作年限的延长而呈现增加的趋势,土壤呼吸熵和微生物熵则呈现降低的趋势.随着连作年限的增加,土壤中细菌多样性和丰度降低,真菌多样性和丰度增加.此外,随着连作年限的增加,土壤中细菌群落之间的拮抗作用增强,而真菌群...  相似文献   

8.
通过明确不同轮作休耕方式对土壤真菌群落结构及功能的影响,探索农田土壤肥力对轮作休耕方式响应的微生态变化特性,为促进黄河下游冲积平原农田生态修复和耕地质量提升提供参考依据.以2018年开始的长期轮作休耕定位试验农田土壤为研究对象,采用Illumina MiSeq高通量测序技术,通过FUNGuild真菌功能预测工具,分析田间定位条件下不同轮作休耕方式[长期休耕(LF)、冬小麦-夏休耕(WF)、冬休耕-夏玉米(FM)和冬小麦-夏玉米周年轮作(WM)],土壤真菌群落组成和功能的差异及其影响因素.结果表明,LF使耕层(0~20 cm)土壤真菌群落丰富度和多样性增加,而WF则使冬小麦收获后深层(20~40 cm)土壤的真菌丰富度和多样性增加;所有土壤样本中共获得2262 OTU,划分为14门、34纲、75目、169科、309属和523种,两个土层中共有的OTU分别包含420类(0~20 cm)和253类(20~40 cm);4种轮作休耕土壤真菌群落门水平上的结构组成相似,但相对丰度各异,优势菌门均为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢菌门(Mortierellomycota),总丰度分别为91.69%~96.91%(0~20 cm)和91.67%~94.86%(20~40 cm);PCoA分析发现,PC1和PC2可以分别累计解释45.56%(0~20 cm)和46.20%(20~40 cm)的群落组成差异;LEfSe的LDA (阈值为4.0)结果可知,LF、FM、WF和WM中共有64个真菌进化枝在统计学上具有显著差异(P<0.05);RDA分析表明,土壤有机碳(TOC)、全磷(TP)、碱解氮(AN)和含水率(SWC)同是显著影响0~40 cm土层真菌群落变化的主要环境因子(P<0.05).通过FUNGuild功能比对发现,不同土层不同处理间的主要营养类型同为腐生营养型、腐生-共生营养型、病理-腐生-共生营养型和病理营养型,但其相对丰度存在差异;LF耕层土壤以病理-腐生-共生营养型真菌为主,深层土壤中则以病理营养型真菌相对丰度最高,而种植过小麦或玉米的处理(FM、WF和WM)两个土层都以腐生营养型为主.由此可见,不同轮作休耕方式改变了土壤真菌群落结构、多样性及营养类型,季节性休耕可用于调控集约化种植的农田土壤微生态环境,促进农田土壤生态系统健康和谐.  相似文献   

9.
The tillage-based winter wheat (Triticum aestivum L.)-summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest USA for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual (i.e., no summer fallow) no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of winter and spring wheat, spring barley (Hordeum vulgare L.), yellow mustard (Brassica hirta Moench), and safflower (Carthamus tinctorius L.) were grown in various rotation combinations. Annual precipitation was less than the long-term average of 301 mm in 7 out of 8 years. Rhizoctonia bare patch disease caused by the fungus Rhizoctonia solani AG-8 appeared in year 3 and continued through year 8 in all no-till plots. All crops were susceptible to rhizoctonia, but bare patch area in wheat was reduced, and grain yield increased, when wheat was grown in rotation with barley every other year. Remnant downy brome (Bromus tectorum L.) weed seeds remained dormant for 6 years and longer to heavily infest recrop winter wheat. There were few quantifiable changes in soil quality due to crop rotation, but soil organic carbon (SOC) increased in the surface 0–5 cm depth with no-till during the 8 years to approach that found in undisturbed native soil. Annual no-till crop rotations experienced lower average profitability and greater income variability compared to WW-SF. Yellow mustard and safflower were not economically viable. Continuous annual cropping using no-till provides excellent protection against wind erosion and shows potential to increase soil quality, but the practice involves high economic risk compared to WW-SF. This paper provides the first comprehensive multidisciplinary report of long-term alternative annual no-till cropping systems research in the low-precipitation region of the Pacific Northwest.  相似文献   

10.
为探究设施番茄种植年限对土壤理化性质和微生物群落影响,以种植1~3 a、5~7 a和>10 a的设施番茄耕层土壤为研究对象,采用常规分析方法测定土壤理化性质,采用Illumina NovaSeq高通量测序技术测定土壤微生物群落结构和多样性.结果表明,随着种植年限的延长,土壤容重和pH呈现降低趋势,最大持水量和有机质等指标逐渐增加,电导率(EC值)和全盐含量先降低后升高,显现出土壤次生盐渍化的趋势,其中土壤有机质、全氮和速效钾含量不同连作年限间差异显著(P<0.05).土壤碱性磷酸酶在种植1~3 a与5~7 a存在显著性差异.各处理间真菌群落相对丰度存在显著性差异,Simpson指数和Shannon指数先升高后降低,Chao1指数逐渐降低;在属水平上,随种植年限的增加,链霉菌属(Streptomyces)等有益细菌群落相对丰度升高成为优势菌属;曲霉菌属(Aspergillus)和Pseudaleuria等致病真菌群落相对丰度逐渐增加成为优势菌属.冗余分析表明设施番茄种植年限与速效钾、速效氮呈显著正相关关系.研究认为,随种植年限的延长,设施番茄土壤次生盐渍化加重、氮磷钾养分累积和微生物群落失衡,导致设施番茄连作障碍.  相似文献   

11.
双氰胺对冬闲稻田和油菜地N2O排放的影响   总被引:2,自引:0,他引:2  
冬季的温室气体排放往往被忽视,而最新的研究结果表明,冬闲稻田和冬季油菜地N_2O排放仍较大,研究相应的减排措施及减排机制对于减少农田土壤N_2O排放有重要意义.在中国科学院桃源农业生态试验站选择冬闲稻田和油菜地两种不同土地利用方式,并设置添加和不添加双氰胺(DCD)处理,采用静态箱采集和气相色谱法结合监测N_2O排放动态,利用分子生物学手段分析氨氧化古菌(AOA)和氨氧化细菌(AOB)的群落结构和丰度变化.结果表明,添加DCD后明显抑制了冬闲稻田和油菜地N_2O排放,分别减少了36.7%和23.6%.DCD施入抑制了冬闲稻田AOA和AOB的丰度但只改变AOA的群落结构,DCD使AOA和AOB丰度分别减少了59.3%和73.7%.与此相反,添加DCD只改变油菜地AOB的群落结构同时只抑制了AOB的丰度.本研究表明,施加DCD能有效减少冬闲稻田和冬季油菜地N_2O排放,但减排机制不一致.  相似文献   

12.
三峡库区消落带是典型的生态脆弱带,其土壤N循环因受到植物根际效应和季节性淹水的影响而具有特殊性.本研究以三峡库区一级支流澎溪河消落带为例,选择4种植被(狗牙根、香附子、苍耳以及玉米)覆盖区,采集植物根际、非根际土壤,分析根际土壤与非根际土壤理化性质、无机氮形态以及7种N素转化相关酶,并比较了4种植物根际效应强度,以反映不同植物覆盖对消落带土壤N循环过程的影响.研究表明:供试植物根际土壤pH值均低于非根际,有机质、全氮、全磷含量均高于非根际,表明植物根际对消落带土壤养分有富集作用;4种植物根际土壤硝态氮、铵态氮、亚硝态氮及14d可矿化氮含量均高于非根际,且土壤硝态氮、亚硝态氮以及14d可矿化氮含量呈现香附子>狗牙根>苍耳/玉米;总体上根际土壤N转化酶活性高于非根际,且狗牙根和香附子覆盖区脲酶、亚硝酸还原酶、谷氨酰胺酶、脱氢酶显著高于玉米和苍耳覆盖区;蛋白酶、脲酶、谷氨酰胺酶活性与4种N形态均呈显著相关性,是消落带土壤N转化的主要参与酶类;根际效应分析结果香附子和狗牙根对消落带土壤N转化的根际效应强度大于苍耳和玉米,有利于土壤N素的固定和保持.植物根际效应对消落带土壤N素循环的影响可为消落带植被恢复工程中植被选择提供参考,也为改善消落带土壤退化相关研究提供科学支撑.  相似文献   

13.
Agroforestry is considered to be a promising alternative to short-fallow shifting cultivation or other monocropping systems. An on-farm experiment was established in 1996 in northern Viet Nam to examine the contribution of the leguminous bush Tephrosia candida (Roxb.) D.C. as a fallow or hedgerow species and as a mulch producer to improve nutrient cycling and prevent nutrient losses by erosion. The systems tested were upland rice monocropping (Mono), natural fallow (NaFa), fallow of Tephrosia (TepFa), hedgerow intercropping with upland rice (Oryza sativa L.) and internal mulching using pruned Tephrosia biomass (TepAl), and upland rice with external mulching using Tephrosia biomass (TepMu). Over two cropping seasons, from April 1996 to April 1998, nutrients recycled and inputs and exports were recorded, as well as changes in C-, N- and P-pools, and in pH in the 0–5 cm topsoil layer.The Tephrosia systems (TepFa, TepAl, TepMu) prevented nutrient losses by erosion effectively. Compared to the NaFa system, the TepFa system accumulated 34% more N in the above-ground plant parts and increased topsoil N by 20%, probably due to N-fixation. There was a trend that the less labile P-pools (NaOH-P) were reallocated into the more labile P-pools (Bicarb-P) in the soil of the TepFa system. Burning released significant amounts of the inorganic P-pools in both the NaFa and TepFa systems and this effect seemed to be more pronounced in the TepFa than in the NaFa. Organic input to crop export ratios for N and P were >1 in the TepAl and TepMu treatments. This was due to a sufficient quantity and quality of the Tephrosia mulching material. However, moderately labile NaOH-extractable organic P seemed to be depleted in the topsoil due to high P uptake in the TepMu treatment. Thus, nutrient cycling and nutrient balances were improved under the Tephrosia systems. But for long-term P sustainability, there is a belief that a combined use of mulching and mineral P fertiliser is needed.  相似文献   

14.
长期不同施肥处理会改变土壤的理化性质和微生物生物量,但长期不同施肥对黄土高原梯田土壤微生物胞外酶活性变化和养分特征的影响尚不清楚.本研究以中国科学院安塞水土保持综合试验站长期养分定位试验样地为基础,分析了不施肥(CK)、有机肥与氮肥混施(MN)、有机肥与磷肥混施(MP)、有机肥、氮肥与磷肥混施(MNP)、单施有机肥(M...  相似文献   

15.
Conservation and restoration of semi-natural wet grasslands often suffer from poor knowledge on successional pathways of respective habitats under different mowing treatments to derive profound management concepts. In this study, we present the results of a 20-year experiment in six semi-natural wet grassland sites in NW Germany including mowing with and without fertilizer addition and fallow. Succession was recorded by permanent plots. The studied wet grassland communities responded quite similar under equal management. Fallow resulted in the most significant changes in floristic and functional composition facilitating highly competitive rushes and tall forbs. The changes were more pronounced the more the experimental management treatment differed from the former use. For all mowing treatments without fertilizer application, we still observed directed changes in the floristic composition even after 20 years. In particular mowing twice led to a shift in floristic composition towards stress-tolerant plants with low nutrient demands, which was paralleled by decreasing productivity and strongly diminishing Ellenberg nutrient values. Our results documented that restoration of low-yielding target communities by regular mowing is possible – even in an area with high atmospheric nitrogen inputs. However, our results also show that succession did not come to an end even after 20 years, most obviously due to the continuous but very slow immigration and spread of new species.  相似文献   

16.
江津市紫色土中N、P养分元素区域空间变异性研究   总被引:49,自引:2,他引:47  
利用地统计学,结合GIS研究紫色土土壤表层(0~20cm)的全氮、碱解氮、全磷和速效磷4种养分含量的空间分布特征结果表明,全氮和速效氮为正态分布,全磷和速效磷为对数正态分布;通过半方差函数分析,发现全氮存在纯块金效应,块金值为0.2,其它养分在一定间距内(50m)存在空间相关性,且为中等强度的空间自相关性(块金值与基台值之比在25%~75%之间);用普通克立格法和对数正态克立格法进行最优内插,做各种养分含量的分布图.结合GIS可充分了解土壤中N、P养分的空间变异性规律,并可进一步应用于精确施肥和农业非点源污染预测和控制.  相似文献   

17.
A quarry is a surface mining operated place, which produces enormous quantities of gravel, limestone, and other materials for industrial and construction applications. Restoration and revegetation of deserted quarries are becoming increasingly important. Three areas of a typical quarry in South China: terrace for crushed materials (terrace), spoiled mound, and remaining side slope, were investigated, to compare the existing plant species and to study the relationship between environmental factors and revegetation. The plant species composition of these three areas was found to differ significantly after eight years of natural recovery. The typical plant communities found over them were composed of gramineous herbs, fems, and shrubs. Soil organic matter, soil moisture, and soil bulk density were considered to be the major determining factors for vegetation succession. There existed abiotic and biotic thresholds during quarrying restoration. Suggestions had been presented that could have accelerated the process of natural recovery in quarries.  相似文献   

18.
洱海流域农田土壤氮素的矿化及其影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
采用好氧间歇淋洗培养法,对洱海流域内的农田、菜地土壤样品培养2周,研究土壤氮的矿化及其影响因素.结果表明,表层土壤2周氮矿化量平均为65.54mg/kg.不同农田利用方式下,表层土壤氮矿化量的平均值为露地菜田粮田大蒜田.土壤氮素矿化以硝态氮为主,且随着土壤深度的增加而降低.土壤氮矿化同全氮、有机质含量呈明显的正相关关系,与pH值呈负相关;氮矿化与无机氮含量、C/N之间无显著关系.全氮、有机质和pH值是影响该流域农田土壤矿化的主要因子.  相似文献   

19.
小麦/苜蓿套作条件下菲污染土壤理化性质的动态变化   总被引:5,自引:2,他引:3  
张晓斌  占新华  周立祥  梁宵 《环境科学》2011,32(5):1462-1470
土壤理化性质是影响污染土壤植物修复效果和修复后土壤适耕性的重要因素.以菲为多环芳烃(PAHs)代表物,采用植物土培和室内分析试验探讨了菲污染土壤小麦/苜蓿套作修复过程中土壤理化性质的动态变化.结果表明,种植植物明显提高了菲污染土壤pH,最大升高幅度可达0.61;相同菲污染水平条件下,套作处理土壤pH与单作处理差异不显著...  相似文献   

20.
谢丹妮  仰东星  段雷 《环境科学》2023,44(5):2681-2693
大气氮沉降是全球变化的重要影响因素之一,而过量氮沉降导致森林出现氮饱和,引起土壤酸化、硝酸根淋溶、氧化亚氮排放增加、植物物种多样性和植被生产力下降.在欧洲、北美和我国大气氮沉降降低的背景下,总结森林生态系统对氮输入降低的响应,不仅能够完善氮沉降对森林生态系统影响的知识体系,也能评估各国已开展的减排行动的成效,为我国制定进一步的减排政策提供科学依据.回顾了欧洲和北美的温带森林以及我国亚热带森林的土壤、地表水、氮循环和植被对大气含氮污染气体和氮沉降降低的响应.土壤溶液中硝酸根浓度对氮沉降的减少响应迅速,但具体响应规律未出现统一趋势.土壤酸化和氮循环过程从高氮沉降中的恢复过程出现滞后现象.森林氮矿化和固持、土壤碳储量和净初级生产力可能需要几十年的时间对氮沉降的减少作出响应.相对而言,虽然有一两年的延迟,土壤无机氮库和氮淋溶量会随着氮沉降的下降而下降.地表水氮浓度与森林生态系统氮状态密切相关.当氮沉降降低时,在历史高氮沉降地区,森林生态系统的氮淋溶下降,因此地表水氮浓度的响应较明显.而在氮缺乏的森林中,普遍较低的地表水氮浓度受到氮沉降变化的影响不显著.地表水酸化的恢复受到土壤硫解吸-矿化和硝化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号