首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
由于自然和人为活动导致自然水体和土壤被As(砷)污染,严重危及生态环境并已受到广泛关注.为实现更大程度地去除含As废水的新型吸附材料,以废弃蛋壳为原材料,采用超声波法制备多孔状且较大比表面积的Na-Si-CHAP[Ca10-xNax(PO46-y-z(SiO4z(CO3y(OH)2-α,载钠硅碳羟基磷灰石],深入分析去除含As(Ⅴ)废水的吸附特性.通过BET比表面积、扫描电镜(SEM)、EDX(能量色散X射线光谱)、X-射线衍射(XRD)等手段对样品进行表征,并进一步探讨了pH、吸附时间、初始ρ[As(Ⅴ)]以及反应温度等因素对吸附效果的影响.结果表明:在pH为6.0、作用时间为60 min、反应温度为313 K等优化条件下,0.2 g Na-Si-CHAP对100 mL 30 mg/L含As(Ⅴ)废水的去除率和平衡吸附容量分别为96.53%和14.48 mg/g.Langmuir等温吸附模型较好地拟合了吸附试验数据,313 K下相关系数(r2)高达0.998 0,饱和吸附容量达46.73 mg/g,明显高于其他同类材料;准二级动力学模型可较好地描述该吸附行为,相关系数高达0.999 9;热力学参数△G(吉布斯自由能变)、△H(焓变)和△S(熵变)的计算值显示,该吸附过程为自发吸热过程.研究显示,Na-Si-CHAP作为一种吸附剂,对含As(Ⅴ)的去除效果明显优于同类材料.   相似文献   

2.
以十六烷基三甲基溴化铵(CTMAB)为表面活性剂,采用共沉淀法制得La2O3纳米颗粒。利用扫描电子显微镜(SEM)、X射线衍射(XRD)和比表面积分析仪(BET)对La2O3纳米颗粒进行分析。采用批实验考察了溶液pH、典型阴离子和离子强度等因素对La2O3纳米颗粒吸附溶液中As (Ⅲ)的影响,并对吸附动力学、吸附等温模型及吸附机理进行研究。结果表明:添加质量分数为0.2%的CTMAB时制得的La2O3对As (Ⅲ)的吸附效果最好。当溶液pH为5~9时,As (Ⅲ)去除率较高,可达85.36%。溶液中共存的SO2-4和CO2-3对As (Ⅲ)的吸附影响较小,而SiO2-3和PO43-增加到10 mmol/L时,As (Ⅲ)去除率从85.36%分别降低至39.14%和25.36%。离子强度对As (Ⅲ)的吸附影响较小,表明该吸附过程为内层吸附。La2O3纳米颗粒对As (Ⅲ)的吸附符合伪二级反应动力学和Langmuir吸附等温模型,表明该吸附为单分子层吸附,理论最大吸附量为45.5 mg/g。La2O3纳米颗粒吸附As (Ⅲ)的机理分析为La2O3表面羟基化后产生的羟基基团La—OH与As (Ⅲ)反应生成单齿或双齿络合物,从而将As (Ⅲ)从水溶液中去除。  相似文献   

3.
水环境中过量Sb(Ⅴ)所引起的环境危害受到越来越多的关注.为了考察工艺参数对铁盐改性生物吸附剂吸附Sb(Ⅴ)效果影响、交互作用及其机理,以Fe(Ⅲ)改性卡氏变形杆菌吸附剂(简称“FMPAs”)为研究对象,采用Box-Behnken响应曲面法对FMPAs吸附处理合成含Sb(Ⅴ)废水的吸附时间、FMPAs投加量、pH、温度及Sb(Ⅴ)初始浓度等因素进行优化,确定了最优吸附条件,并对吸附过程的等温模型、动力学模型及吸附机理进行了研究.结果表明:①FMPAs吸附Sb(Ⅴ)的最优条件为吸附时间3.0 h、FMPAs投加量1 910.04 mg/L、pH 2.31、温度45.0℃、Sb(Ⅴ)初始浓度24.80 mg/L,且最优条件下Sb(Ⅴ)的去除率高达97.03%.②FMPAs对Sb(Ⅴ)的吸附符合Langmuir等温吸附模型,其最大吸附容量(qmax)为60.506 mg/g,其吸附动力学过程可采用准一级动力学模型拟合,属于单层吸附和化学吸附.③FMPAs吸附Sb的机理主要为Fe(Ⅲ)改性卡氏变形杆菌生成了Fe—O—OH、Polyose—Fe、Polyose—O—Fe(OH)2等化合物,这些物质中羟基被Sb(Ⅴ)取代生成新的配合物Fe—O—Sb,使Sb(Ⅴ)得到吸附去除.研究显示,FMPAs对Sb(Ⅴ)具有较高的吸附容量,是一种极具潜在应用价值的绿色生物质吸附剂,可用于处理含Sb(Ⅴ)废水.   相似文献   

4.
为有效去除水体中的磷酸盐,采用沉淀沉积方法合成了氢氧化镧〔La(OH)3〕掺杂氧化铝(Al2O3)的吸附材料La(OH)3(X)/Al2O3〔X表示吸附剂中的La(OH)3质量含量〕,并对其吸附磷酸盐的性能进行研究. 结果表明:①Al2O3和La(OH)3是吸附剂中磷酸盐的主要结合位点. ②磷酸盐初始浓度为50 mg/L时,La(OH)3(19)/Al2O3吸附剂在初始阶段吸附较快,且在200 min左右达到吸附平衡. La(OH)3(X)/Al2O3吸附剂对磷酸盐的吸附量随着La(OH)3负载量的提高而升高,其吸附等温线符合Langmuir模型拟合. La(OH)3(7)/Al2O3、La(OH)3(13)/Al2O3、La(OH)3(19)/Al2O3和La(OH)3(27)/Al2O3对磷酸盐的最大吸附量可分别达到25.32、27.40、43.10和53.76 mg/g (以P计). 这表明La(OH)3掺杂Al2O3后为磷酸盐提供更多的活性位点,有效提高了磷酸盐的吸附容量. ③La(OH)3(19)/Al2O3对磷酸盐的吸附量随pH的升高而降低,共存阴离子影响试验表明,La(OH)3(19)/Al2O3对磷酸盐具有较高的吸附选择性. ④经过5次吸附-脱附循环后,La(OH)3(19)/Al2O3表现出稳定的吸附和再生性能,对实际水体磷酸盐的去除试验结果表明其可用于实际水体中磷酸盐的去除. 研究显示,La(OH)3(19)/Al2O3的磷酸盐吸附速率快、吸附容量高、吸附选择性高,具有潜在的应用价值.   相似文献   

5.
生物炭因具有原料来源广泛、表面活性官能团含量丰富、性质稳定等特点,近年来,在环保领域作为重金属处理吸附剂受到越来越多的重视。使用松木屑在碳化温度为400 ℃条件下制备生物炭(简称AB400),并使用HNO3、H3PO4、NH3·H2O、Ca(OH)2对生物炭进行改性。借助SEM、FTIR、BET、Boehm滴定法和Zeta电位测定等方法对改性前后AB400表征,并进行Cr(Ⅵ)吸附实验。改性后生物炭结构呈半穿透至穿透状圆形塌陷,存在微孔。酸性改性条件下,HNO3改性生物炭(简称AB400HNO3)、H3PO4改性生物炭(简称AB400H3PO4)中酸性官能团含量均有所升高,且生物炭pH均减小,其对应pHpzc增大,而碱改性的生物炭则反之。对于Cr(Ⅵ)的吸附,酸性改性生物炭在整体上的吸附效果优于碱性改性生物炭,其中AB400H3PO4吸附效果最佳,吸附容量从58.48 mg/g提高至101.82 mg/g。这是因为碱性改性生物炭表面为负电荷,与Cr(Ⅵ)的含氧阴离子相斥;而AB400HNO3微孔容积较小,圆形塌陷数量甚微,表面虽正电荷,但吸附性能不及AB400H3PO4。  相似文献   

6.
载镧或铈生物炭吸附水体中As(Ⅴ)的作用机制   总被引:1,自引:0,他引:1  
李锦  祖艳群  李刚  孙国新 《环境科学》2018,39(5):2211-2218
本实验采用一步热解法制备载稀土元素镧和铈生物炭(La-BC、Ce-BC),并对其吸附As(Ⅴ)的机制进行讨论.吸附实验结果表明,相对于BC、Ce-BC,La-BC对As(Ⅴ)有较强的吸附能力,在pH=7时理论最大吸附量为20.1 mg·g-1.在pH为5~9范围内随pH升高吸附量降低,最高(pH=5)为39.1 mg·g-1,最低(pH=9)仅为17.6 mg·g-1,在酸性条件下吸附能力较强.根据SEM-EDS、FTIR、XPS分析,吸附机制为La-BC上C=O与La—O官能团参与吸附As(Ⅴ)并分别转化为C—O和La—OH.Ce-BC对As(Ⅴ)吸附能力较差,是由于Ce-BC上虽然存在C=O与Ce—O官能团,但无法参与吸附As(Ⅴ).  相似文献   

7.
通过设计批实验和表征分析,探究不同浓度的磷酸盐影响下,一硫代砷酸盐(MTA)在土壤上的吸附特征和机理.结果发现,Elovich动力学模型和Langmuir等温吸附模型可较好地拟合MTA在土壤中的吸附过程,相关系数R2分别为0.983和0.994,表明土壤吸附MTA发生在局部位置,吸附过程主要以非均相扩散为主,拟合所得最大单层吸附量为254.214mg/kg.MTA与磷酸盐共存时,随着溶液中磷酸盐初始浓度的增大,土壤对MTA的平衡吸附量逐渐下降,对磷酸盐的吸附量逐渐增大;SEM-EDS结果表明无论是否添加磷酸盐,反应后的土壤表面都能检测到少量As,但添加磷酸盐条件下土壤表面的As含量则相对较低,证实磷酸盐的存在降低了土壤对MTA的吸附;XRD结果表明MTA能与土壤中的铁铝矿物发生络合反应生成内球络合物-[2Al (H2AsO43]、≡Al2O2AsO (SH)和-[2Fe (H2AsO43],而磷酸盐会与土壤表面的羟基形成内球络合物,导致土壤对MTA的吸附能力减弱.  相似文献   

8.
采用配煤、原位浸渍和两步活化法制备了4种原位载铁活性炭(FGL1/2/3/4),并以空白炭C-GL为基础的表面铁浸渍后改性炭(Fe-GL-2/3/4)为对照,研究了原位载铁炭对水中As和腐植酸(HA)的同步吸附效能.结果表明,炭化料原位载铁促进了比表面积(SBET)和中孔结构的发育.其中,原位载铁炭FCL4(载铁量6.51%)在45Å~480Å的范围内的中孔容积(Vmes)比C-GL增加了0.1146cm3/g;而后改性载铁则造成SBET和Vmes的显著降低.原位载铁同时促进了表面碱度的增加,保证了中性条件下更好的As离子吸附能力;FCL4对As(Ⅲ)和As(V)的Langmuir最大吸附量(L-Qmax)分别达到2.566和2.825mg/g.原位载铁炭进一步发育的中孔结构促进了对HA(<10mg DOC/L)的吸附效能,FGL4对HA的Langmuir最大吸附量(QHA)达到46.25mg DOC/g.As-HA共存体系内FGL4对各组分的吸附容量有所降低,但As(Ⅲ)和As(V)的吸附容量仍达到2.325和2.675mg/g.  相似文献   

9.
在不同热解温度及原料配比条件下,采用水解共沉淀方法制备针铁矿改性生物炭材料(GMB),借助SEM-EDS、XRD、FTIR、XPS进行表征,并进行Cr (Ⅵ)吸附实验,探究吸附性能和机理。结果表明:1)经改性后生物炭表面生成了羟基氧化铁(FeOOH),吸附能力有大幅提升;2)热解温度为600℃,生物炭与Fe (NO33·9H2O的质量比为1:12时制备的GMB600-12表现出最佳吸附性能,最大吸附容量为20.67 mg/g;3)准二级动力学揭示Cr (Ⅵ)的吸附以化学吸附为主,Langmuir和Freundlich模型都能很好地描述GMB对Cr (Ⅵ)的吸附特征;4) XPS的结果进一步表明GMB去除水溶液中Cr (Ⅵ)是氧化还原和表面吸附协同作用的结果。  相似文献   

10.
为同时去除农田地表径流中的重金属和农药,利用猪粪制备未改性猪粪生物质炭(简称"未改性生物质炭")和硫脲改性猪粪生物质炭(简称"改性生物质炭"),分析比较硫脲改性对生物质炭的pH、元素组成、表面含氧官能团和巯基含量等理化性质的影响,并系统地研究了单一和复合污染体系中初始浓度对两种生物质炭吸附水溶液中镉(Cd)和草甘膦效率的影响.结果表明:①与未改性生物质炭相比,改性生物质炭的pH、O/C(原子比)和H/C(原子比)降低,比表面积增大,含氧官能团和巯基含量增加.②与未改性生物质炭相比,改性生物质炭对Cd和草甘膦的吸附能力增强,最大表观吸附量(Qmax)增加了近3倍;随着Cd和草甘膦初始浓度的增加,未改性和改性生物质炭对Cd和草甘膦的吸附量逐渐增加,增加量最高分别达18.52%和7.60%.③单一污染体系中两种生物质炭对Cd或草甘膦的吸附更符合Langmuir等温吸附模型,说明其对Cd或草甘膦的吸附机理是单分子层的吸附起主导作用.④复合污染体系中,未改性和改性生物质炭对Cd的吸附能力分别增加了25.28%和21.26%,未改性生物质炭对Cd的最大表观吸附量增加了29.34%,但改性生物质炭对Cd的最大表观吸附量降低了47.28%;未改性和改性生物质炭对草甘膦的吸附能力减弱,但最大表观吸附量分别增加了2.63和3.45倍.研究显示,硫脲改性猪粪生物质炭作为一项有前景的新技术,为解决实际环境中的复合污染问题提供了经济环保的技术手段.   相似文献   

11.
通过批次吸附实验及介观和谱学等表征方法,研究了大肠杆菌(E.coli)粉末对水体中U(Ⅵ)的富集行为和吸附模型,并对其作用产物进行了详细分析.结果表明:大肠杆菌对初始浓度为50mg/L U(Ⅵ)溶液(pH=5)的吸附容量可达到276.89mg/g.Langmuir等温模型和准二级动力学方程能较好的描述其吸附过程. FTIR、SEM-EDS、XRD分析结果表明:在与水体中U(VI)作用后,大肠杆菌表面检测出UO22+的红外特征峰(876.16cm-1)和U的能谱吸收峰(结合能=2.4~4.4keV).UO22+主要与菌体表面的烷基、氨基、羧基、分子间氢键发生作用,重点与PO2-、P(OH)2、PO43-以及PO3-等含P基团进行络合配位,最终产物以CaU(PO4)2、Ca(UO2)2(PO4)2·xH2O、NaUO2(PO3)3等铀的磷酸盐形式存在.  相似文献   

12.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

13.
为研究改性生物炭对砷镉复合污染水体中镉和砷的吸附特征。本研究以牛粪、污泥、竹屑三种不同原料制备生物炭,利用镧(La)对生物炭进行改性,并采用元素分析、扫描电镜、傅里叶变换红外光谱和X射线光电子能谱等分析手段对改性前后的生物炭进行表征,结合等温吸附实验及吸附动力学实验,对比各生物炭对As (V)、Cd (II)的吸附性能并探讨其内在机理。结果表明,竹屑炭(BB)的芳香性大于牛粪炭(CB)和污泥炭(SB)。La改性使三种生物炭在热解过程中形成了酮类、酯类、羰基等含氧官能团,并在表面引入羟基。X射线光电子能谱结果显示La以氢氧化物的形式负载在生物炭表面。各生物炭对Cd (II)、As (V)的吸附符合准二级吸附动力学和Langmuir等温吸附方程。La改性生物炭对As (V)的最大拟合吸附量达到3.47~4.51 mg/g,显著高于未改性生物炭(1.82~2.50 mg/g)(p<0.05)。在As (V)、Cd (II)吸附过程中,La改性生物炭表面的La与As (V)发生络合反应,同时Cd (II)与镧基氢氧化物发生配体交换,生成Cd (OH)2沉淀。本研究证明了La改性有效提高了生物炭对As (V)、Cd (II)同时吸附的能力。  相似文献   

14.
为获得培氟沙星废水高效去除的环境友好型吸附剂,以城市剩余污泥为原料制备了SBC(污泥基生物炭),并采用氧化石墨烯(GO)对其改性得到GO-SBC(氧化石墨烯改性生物炭),利用SEM和FTIR对其进行表征,通过静态吸附试验探讨了生物炭对培氟沙星的去除效果,并通过吸附模型和FTIR、XPS表征技术进一步探究了GO-SBC对培氟沙星的吸附机理.结果表明:①改性后的GO-SBC表面更加粗糙,生物炭表面含氧官能团数量增加.②动力学吸附研究表明,GO-SBC对培氟沙星的最大吸附容量为137.51 mg/g,比SBC对培氟沙星的吸附容量提高了40.32%,且GO-SBC对培氟沙星的吸附更符合伪二级动力学模型,表明吸附过程主要以化学吸附为主.③GO-SBC对培氟沙星的吸附符合Freundlich等温吸附模型,表明该吸附过程为多层吸附.④热力学研究表明,吸附过程为自发吸热反应.⑤GO-SBC对培氟沙星的吸附机制主要有两种作用,一种是π-π相互作用,另一种是GO-SBC的N—H与培氟沙星的C—H相互作用.研究显示,GO-SBC是一种高效去除培氟沙星的吸附剂,这为城市剩余污泥的资源化利用提供了出路,也为抗生素废水治理提供了方法.   相似文献   

15.
研究了3种外源硫(Na2SO4、Na2SO3和Na2S2O3·5H2O)对Desulfovibrio desulfuricans sub sp.(D.desulfuricans sp.)的胞外聚合物(EPS)的胁迫/诱导作用。结果表明,在还原性硫源0.50g/L Na2SO3的条件下,EPS产量最高,为2104.39mg/g VSS,蛋白质含量为1888.52mg/g VSS,较胁迫/诱导前均提高了300%以上;其对Zn(Ⅱ)的吸附性能最好,为954.4mg/g EPS,提高了98.17%。三维荧光(3D-EEM)结果表明,胁迫/诱导后EPS中类酪氨酸均大量增加;傅里叶红外光谱(FTIR)结果表明,胁迫后-OH、C=O、C-O-C等官能团均大量增加,在Zn(Ⅱ)的吸附中发挥了重要作用;X光电子能谱(XPS)结果表明,在还原性硫源(Na2SO3和Na2S2O3·5H2O)胁迫/诱导后,EPS中C-O/C-N、C=N和某种含氧基团(X)大量增加,可能是吸附Zn(Ⅱ)的主要基团。  相似文献   

16.
玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能   总被引:6,自引:0,他引:6  
为探明玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能,研究了其对NH4+-N、NO3--N和NO2--N的吸附动力学过程;并用等温吸附模型对NH4+-N和NO3--N的吸附过程进行拟合,探讨制得生物炭对无机氮的吸附机理.结果表明,400℃和600℃制得玉米秸秆和玉米芯生物炭均呈碱性,表现为400℃ < 600℃;同种原材料,与400℃制得生物炭相比,600℃制得生物炭碱性含氧官能团数量较多,而酸性含氧官能团数量较少.400℃制得生物炭对NH4+-N的吸附能力较强(玉米秸秆和玉米芯生物炭的平衡吸附量分别为4.22和4.09mg/g);而600℃制得生物炭对NO3--N和NO2--N的吸附能力较强(玉米秸秆和玉米芯生物炭对NO3--N的平衡吸附量分别为0.73和0.63mg/g;对NO2--N的平衡吸附量分别为0.55和0.35mg/g).与NO3--N和NO2--N相比,玉米秸秆和玉米芯生物炭对NH4+-N的吸附能力更强,4种生物炭对NH4+-N的平衡吸附量是NO3--N/NO2--N的4.29~20.2倍.等温吸附模型拟合研究表明,玉米秸秆和玉米芯生物炭对水溶液中NH4+-N和NO3--N的吸附过程均可用Freundlich模型描述,其在生物炭表面的吸附是多分子层吸附.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号