首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2021年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
将市政生物污泥资源转化与吸附制冷能效提升相交叉融合,通过炭素前驱体进行复配、KOH催化炭化及磷酸催化活化相结合的压块炭改进工艺对污泥基活性炭的孔结构进行原位调控,制备了4种新型污泥基活性炭(WNC-4/3/2/1);对比研究了以污泥炭和甲醇制冷剂为工质对的吸附制冷床的吸附/脱附循环、制冷量及制冷功率变化特性.结果表明: KOH和磷酸浸渍过程可分别促进微孔及中孔结构的发育,WNC-4的总孔、微孔及中孔容积分别达到0.6960,0.1641和0.5319cm3/g.比表面积与孔结构容积水平的同步提升与甲醇制冷剂吸附/脱附量呈良好的相关性(R2>0.90).基于Langmuir吸附等温模型(R2=0.9939)计算的最大吸附量QL*达到(552.67±23.83)mg/g;基于Sokoda-Suzuki方程计算的40min内的平衡吸附量和脱附量分别为(372.94±9.504)和(412.55±8.309)mg/g.脱附温度为100℃时,WNC-4吸附制冷系统的稳定脱附量、制冷量和制冷功率分别达到(328.81±10.74)mg/g,(300.34±9.81)kJ/kg和(600.68±19.62)kJ/(kg·h).  相似文献   
2.
采用配煤、原位浸渍和两步活化法制备了4种原位载铁活性炭(FGL1/2/3/4),并以空白炭C-GL为基础的表面铁浸渍后改性炭(Fe-GL-2/3/4)为对照,研究了原位载铁炭对水中As和腐植酸(HA)的同步吸附效能.结果表明,炭化料原位载铁促进了比表面积(SBET)和中孔结构的发育.其中,原位载铁炭FCL4(载铁量6.51%)在45Å~480Å的范围内的中孔容积(Vmes)比C-GL增加了0.1146cm3/g;而后改性载铁则造成SBET和Vmes的显著降低.原位载铁同时促进了表面碱度的增加,保证了中性条件下更好的As离子吸附能力;FCL4对As(Ⅲ)和As(V)的Langmuir最大吸附量(L-Qmax)分别达到2.566和2.825mg/g.原位载铁炭进一步发育的中孔结构促进了对HA(<10mg DOC/L)的吸附效能,FGL4对HA的Langmuir最大吸附量(QHA)达到46.25mg DOC/g.As-HA共存体系内FGL4对各组分的吸附容量有所降低,但As(Ⅲ)和As(V)的吸附容量仍达到2.325和2.675mg/g.  相似文献   
3.
为进一步提升生物增强活性炭工艺(BEAC)中炭表面的功能菌载持量及生物降解活性,通过CO2接触氧化与深度活化相结合的压块炭制备改进工艺对煤质净水炭的孔结构进行调控.结果表明:基于改进工艺制备的XHIT型炭的中孔容积(0.7041cm3/g)及中孔容积率(63.95%)显著提高,其表面复合功能菌初始固定化生物量达到9.13mmol/g(以P计),增殖速率为2.123mmol/(g·d)(以P计).深度活化产生的高含氧量(9.96%)显著降低了XHIT型炭表面吸附作用对水中溶解氧亲和度((0.42±0.07)mg DO/L),功能菌生物降解对水中溶解氧的利用效率达到91.17%.基于XHIT型炭构建的BEAC工艺(通水倍数为39.50m3/kg)对松花江水源水中的微量有机污染物(CODMn)的平均去除率达到(70.65±15.22)%,有机污染物累积去除量达到94655.50mg CODMn/kg炭.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号