首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 325 毫秒
1.
制备了磁性纳米复合吸附剂PAM@Fe3O4/MnO2(PFM),用于含铜废水的吸附实验研究,考察了吸附剂投加量、重金属溶液初始浓度、吸附时间等因素对吸附效果的影响。实验结果表明:磁性纳米复合吸附剂PFM可有效去除水中的铜离子,在Cu2+浓度为50 mg/L,pH为6.0,吸附剂量为1.6 g/L的条件下,在400 min达到吸附平衡,吸附容量可达到30.29 mg/g,Cu2+去除率可达到97%。吸附-再生循环实验证实PFM具有良好的再生性能,在去除Cu2+方面具有很好的实际应用前景。VSM分析表明:纳米PFM具备超顺磁性和铁磁性的优势;PFM的XRD图谱显示,PAM附着于纳米Fe3O4/MnO2表面,增强了其与溶液中金属离子接触的表面积,有利于对金属离子的吸附;在纳米PFM吸附剂的FTIR中出现PAM中的酰胺键,印证了Fe3O4/MnO2与PAM成功制备为磁性纳米复合吸附剂PFM。  相似文献   

2.
以壳聚糖为原材料,通过原位共沉淀法和柠檬酸钠交联法制备了一种新型多孔磁性壳聚糖凝胶微球吸附剂CS-citrate/Fe3O4.利用扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外光谱(FTIR)、热重分析(TG)对吸附剂进行了表征.结果表明,吸附剂内部具有发达的孔隙结构,并均匀分布有平均直径为(4.79±1.09)nm的Fe3O4纳米颗粒;吸附剂中引入Fe3O4后,仍存在羟基、氨基和羧基等功能基团,且吸附剂磁性良好可用于磁场分离;吸附剂对Pb(Ⅱ)的吸附等温线和动力学研究表明,吸附过程以化学吸附为主,最大吸附容量可达178.25mg/g.  相似文献   

3.
石墨烯基磁性复合材料吸附水中亚甲基蓝的研究   总被引:3,自引:2,他引:1  
常青  江国栋  胡梦璇  黄佳  唐和清 《环境科学》2014,35(5):1804-1809
建立了一种超声辅助共沉淀法制备磁性Fe3O4/氧化石墨烯(Fe3O4/GO)纳米粒子.透射电镜和磁滞回线研究表明,该复合物具有小的颗粒尺寸和超顺磁性.该磁性纳米材料可以吸附废水中的染料亚甲基蓝,实验研究了溶液pH值、吸附剂的用量、时间和温度对亚甲基蓝去除率的影响.结果表明,pH值在6~9范围内,Fe3O4/GO都能高效地吸附亚甲基蓝.反应过程在前25 min反应速率很快,到180 min内达到吸附平衡.该磁性纳米材料对亚甲基蓝的吸附符合Langmuir吸附等温模型和准二级动力学方程,吸附过程是一个自发和吸热过程.该吸附材料对亚甲基蓝吸附容量高,在313 K时Fe3O4/GO的饱和吸附量为196.5 mg·g-1.另外,可以方便地通过外部磁场分离回收吸附剂,利用过氧化氢可以再生重复使用,是一种优良的吸附染料废水的材料.  相似文献   

4.
为有效去除废水中Fe3+,采用共沉淀法制备Fe3 O4磁流体,以水合肼为还原剂制备还原氧化石墨烯(RGO),经改进的St?ber法合成了Fe3 O4@mSiO2-RGO磁性介孔纳米复合材料.利用FT-IR、XRD、BET、磁响应等分析方法对Fe3 O4@mSiO2-RGO进行了结构表征,考察了吸附时间、初始浓度和吸附剂...  相似文献   

5.
以共沉淀法制备纳米Fe3O4,通过在颗粒表面接枝聚甲基丙烯酸(PMAA),制备了一种新型磁性纳米吸附剂.用透射电镜(TEM)、X-衍射分析(XRD)等对其进行了表征,并考察了它对酸性玫瑰红B(RB)的吸附性能.结果表明,制备的磁性微球平均粒径18nm.该吸附剂能有效去除RB,吸附速率很快,在5min内基本达到平衡.等温吸附数据符合Langmuir模型,饱和吸附容量为0.2mg/mg,吸附常数为7.2mL/mg.吸附为吸热过程,288~318K时,焓变为18kJ/mol.  相似文献   

6.
以纳米四氧化三铁、氧氯化锆和氨水为原料,用溶胶凝胶法合成了磁性纳米氢氧化锆。通过静态吸附试验研究磁性纳米氢氧化锆对硫酸根的吸附性能。考察了溶液初始pH、吸附剂投加量、温度等因素对吸附效果的影响。结果表明:pH是影响吸附的重要因素,适宜的pH为1~2。吸附容量、去除率均随投加量增大而增大,之后去除率趋于平衡。磁性纳米氢氧化锆对硫酸根吸附过程符合Langmuir单分子层模型。对热力学参数ΔG0、ΔH0、ΔS0进行分析,表明磁性纳米氢氧化锆对硫酸根的吸附为吸热、熵值增加的自发过程。动力学分析表明,准二级动力学模型能更准确地拟合动力学过程。对吸附饱和的磁性纳米氢氧化锆进行脱附和再吸附,脱附率可达90%,再吸附容量为90 mg/g,表明磁性纳米氢氧化锆是一种磁分离性能良好的可以重复利用的硫酸根吸附剂。  相似文献   

7.
利用正硅酸乙酯水解在磁性纳米锰锌铁氧体表面包裹SiO2,制备了一种新型“核/壳”结构磁性纳米复合物材料Si-Fe-MNCs.采用N2-吸附脱附法、透射电子显微镜(TEM)、振动样品磁强计(VSM)和傅利叶变换红外技术(FT-IR)分别对Si-Fe-MNCs的织构性能、形貌和磁性能进行了表征.结果表明,该磁性材料对亚甲基蓝表现出良好的吸附性能,318K时平衡吸附量在40.31~184.1mg/g之间,120min可达吸附平衡,符合准二级动力学方程.吸附过程符合Langmuir等温吸附模型,热力学计算结果表明Si-Fe-MNCs对亚甲基蓝的吸附是以表面物理吸附为主的自发吸热过程,红外结果表明氢键是Si-Fe-MNCs表面官能团与亚甲基蓝之间的主要作用力.Si-Fe-MNCs采用H2O2进行再生,5次循环使用后,对MB的平衡吸附量仍可维持在93.64mg/g.  相似文献   

8.
以沸石为载体,选用镁、镧和铁为改性剂,采用水热法制备了一种新型高效且易于磁性分离回用的载镧磁性沸石吸附剂(MLFZ).等温吸附和动力学研究结果表明,其吸附行为符合Langmuir等温模型和准二级动力学模型,MLFZ饱和吸附量为13.46 mg·g-1; MLFZ在pH为3~9范围内均表现出良好的吸附性能,共存离子条件下对磷酸根具有特异吸附能力,通过磁性吸附重复使用5次后,MLFZ对磷酸盐去除率维持在90%左右,突显了其易于回收再利用的优点;FTIR、 XPS和Zeta电位表征显示,表面沉积、静电吸附作用和镧与磷酸盐通过配体交换形成内层络合物在吸附过程中为主要作用.将MLFZ用于处理自然池塘污水,结果显示磷酸盐浓度由0.86 mg·L-1降低到0.013 mg·L-1,表明该吸附剂具有良好的实际应用前景.  相似文献   

9.
磁性龙虾壳吸附去除水中磷的特性   总被引:1,自引:0,他引:1  
以四氧化三铁修饰的龙虾壳为吸附剂,研究其对水中磷的吸附特性.结果显示:4g/L磁性龙虾壳吸附除磷效率最佳,低浓度的含磷废水(≤20mg/L)的吸附除磷效率达到91.6%以上,磁性龙虾壳吸附除磷适宜的pH值范围广,共存离子(Cl-、SO42-、NO3-和HCO3-)对磁性龙虾壳吸附除磷的影响很小,其中HCO3-有微弱的抑制效果.Freundlich方程能很好地描述磷在磁性龙虾壳上的吸附行为,吸附过程很好地遵循准二级动力学模型.热力学分析表明磁性龙虾壳对磷的吸附过程是自发的.X射线衍射和傅里叶红外光谱分析进一步表明,磁性龙虾壳吸附除磷的主要机制是配位交换、静电作用和表面沉淀.  相似文献   

10.
纳米磁性颗粒Fe3O4用于吸附水相中酸性红73及其机理研究   总被引:1,自引:1,他引:0  
利用纳米磁性颗粒处理含酸性红73废水以利于进一步降低其色度.实验以酸洗废液制备的纳米磁粉Fe3O4作为吸附剂,并通过单因素实验和吸附动力学及热力学的分析探讨其对酸性红73的表面吸附的吸附机理.结果表明:纳米磁粉Fe3O4对酸性红73的表面吸附符合假二级动力学方程,其反应活化能为49.05 kJ·mol-1.磁粉对酸性红73的吸附是快速的表面物理吸附,其表面吸附行为符合Langmuir等温吸附式,是放热和熵减的自发过程.在温度T为303 K的条件下,20 min内的饱和吸附量能可达到40.1 mg·g-1.因此,用纳米磁粉Fe3O4吸附处理含偶氮染料废水,吸附平衡可在很短的时间内实现.  相似文献   

11.
磁絮凝分离法处理含油废水的试验   总被引:2,自引:0,他引:2  
通过磁絮凝分离法处理含油废水,确定适宜的磁粉和絮凝剂、助凝剂的加入量,以及加料顺序和搅拌条件对反应的影响,并进行了普通絮凝和磁絮凝的对比试验。结果表明,当废水含油量为100~200mg/L时,反应最佳工艺参数:磁粉加入量为280mg/L,PFC和PAM加入量分别为25、0.5mg/L,磁粉和PFC同时先于PAM投加,且投加时搅拌速度以250r/min为宜。  相似文献   

12.
论述了重金属废水的来源及危害,简要概述了当前重金属废水的处理技术,着重阐述了磁分离技术的基本原理及其在重金属废水处理中的应用情况,指出磁分离技术具有高效、短时、占地少、成本低、耐冲击负荷能力强及不产生二次污染等优点,是一项极具发展前景的技术。最后还指出了磁分离技术在重金属废水处理中面临的问题,针对这些问题展望了磁分离技术在废水处理领域的三个主要研究趋势,一是制备高效、可再生磁种;二是开发磁回收工艺;三是研究磁种与重金属及其他污染物的作用机理。  相似文献   

13.
磁技术在污废水处理中的作用机理及应用   总被引:2,自引:0,他引:2  
污废水生物处理技术不断地向工艺流程简单、处理费用低和处理效果好的方向发展。磁技术在该领域具有很好的发展潜力。磁场具有生物效应,可增强微生物活性。磁粉能与活性污泥絮体紧密结合,形成具有特殊分离性能并能抑制剩余污泥产生的磁化活性污泥。磁化活性污泥法在日本的污水处理厂有未排泥连续运行2年的成功先例。近年来微生物的磁效应在废/污水生物处理中的应用引起越来越多国内外研究者的注意,磁技术与其他水处理技术之间的结合是比较热门的研究领域。  相似文献   

14.
以高铁酸钾为氧化剂,基于改进Hummers法制备了新型磁性氧化石墨材料,在SEM、FTIR、氮气吸脱附和表面接触角表征基础上,探究了该材料处理乳化含油废水的效果及磁致增强效应.结果表明:相较于石墨,磁性氧化石墨比表面积增大,表面有卷曲结构并负载着Fe3O4颗粒,具有含氧官能团,存在疏水性较强的微观孔隙结构.在外加磁场条件下,磁性氧化石墨团聚,形成疏水性宏观孔隙结构,利于乳化油滴的吸附和附着.磁性氧化石墨处理乳化含油废水的能力远好于石墨与粉末活性炭,且处理效率与磁场强度成正相关,COD去除率可达95%以上.使用后的磁性氧化石墨进行溶剂萃取或热处理,可以循环使用.磁性氧化石墨经过4次循环使用,热再生效率为92%,溶剂萃取再生效率为86%.以上研究为乳化含油废水的处理提供了一种有效的方法.  相似文献   

15.
磁种凝聚-磁分离技术处理含Ni~(2+)电镀废水的研究   总被引:8,自引:1,他引:8  
应用磁种凝聚 磁分离技术处理Ni2 + 电镀废水。首先进行了磁种凝聚的试验 ,研究了pH、磁种、聚丙烯酰胺对Ni(OH) 2 沉淀物与磁种凝聚成“磁性矾花”过程的影响。其次进行了从废水中脱除磁性矾花的磁分离试验 ,考查了磁分离器的磁场强度对磁分离过程的影响。试验结果表明 ,经这种方法处理后 ,废水中Ni2 + 的去除率达到 99%以上 ,出水中Ni2 + 浓度为 0 4 2mg L ,而且Ni2 + 可以回收 ,磁种经酸泡后可以循环再用  相似文献   

16.
磁分离技术在水处理中的研究与应用进展   总被引:4,自引:0,他引:4  
磁分离技术具有分离速率快、效率高、无二次污染、占地少、投资低、操作方便等优点,在水处理领域得到了越来越多的研究和应用,特别是随着超导高梯度磁分离技术以及磁分离器设计的进一步发展,其在水处理领域极具潜能.因此,本文通过文献调研,分析和总结了目前主要磁分离技术(例如,磁场直接应用、磁絮凝-磁分离、磁吸附-磁分离、磁催化-磁分离及磁分离耦合技术)在水处理领域的研究进展,介绍了近年来磁分离技术在国内水处理行业中的研究与实际工程应用推广现状,分析了磁分离技术应用于水处理领域的优势和当前应用中存在的限制,并对其未来发展方向进行了展望.虽然磁分离技术目前已经成为水处理领域一项广泛应用的分离技术,但在机理研究、特异性磁种制备、磁体技术与磁分离器设计、磁分离工艺优化及实际的工程应用推广上仍存在一定的滞后,需要进一步的开展研究工作.  相似文献   

17.
磁性微球负载光催化剂制备及处理造纸废水研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,在磁性颗粒表面包覆TiO2,制备了易于固液分离的磁载光催化剂TiO2/SiO2/Fe3O4,通过XRD和TEM对产物的晶体结构、晶粒大小、形貌进行了表征,讨论了焙烧温度、焙烧时间、催化剂用量和光照时间等对TiO2光催化剂处理造纸废水的影响。结果表明:焙烧温度为500℃、焙烧时间3.5h时,光催化活性最高;催化剂用量为2.5g/L,光照时间4h时TiO2降解造纸废水的能力最强。  相似文献   

18.
以磁性材料为原料,经过特定的工艺处理,对多孔陶瓷进行磁化改性获得磁性多孔载体,并将该载体应用于生物膜反应器中进行焦化废水处理试验。对不同类型的多孔陶粒载体进行对比试验,结果表明:磁性载体生物膜反应器对COD、NH3-N的去除率比普通活性污泥法高出25%30%,比非载体生物膜反应器高出15%30%,比非载体生物膜反应器高出15%20%左右。反应器的曝气量为1.5 L/h,曝气时间为10 h/d,温度为2520%左右。反应器的曝气量为1.5 L/h,曝气时间为10 h/d,温度为2530℃。焦化废水经磁性载体生物膜反应器处理后,上清液中COD,NH3-N的去除率均在90%左右。出水浓度达到国家工业废水排放二级标准(GB18918-2002)。  相似文献   

19.
宋永会  魏健  马印臣  曾萍 《环境科学研究》2014,27(12):1513-1518
采用络合萃取法处理金刚烷胺制药废水,考察了初始pH、络合剂种类、稀释剂配比、油/水相比和反应温度等对废水中金刚烷胺萃取效率的影响,并对萃取剂中金刚烷胺进行了反萃取分离回收. 结果表明:采用V(P204)〔P204为二(2-乙基己基磷酸)〕∶V(正辛醇)为3∶2的复配萃取剂处理金刚烷胺制药废水,在初始pH为8.0、油/水相比为1∶1和温度为25 ℃的条件下,能够去除废水中99.7%以上的金刚烷胺;在反萃取过程中,V(P204)∶V(正辛醇)为1∶4的复配萃取剂可以获得更高的反萃取效率,以1.0 mol/L的HCl溶液为反萃取剂,当油/水相比为1∶1时,可将51.7%的金刚烷胺从萃取剂中反萃分离,回收得到的金刚烷胺盐酸盐溶液可以回用到生产工艺中,P204-正辛醇复配萃取剂可在萃取和反萃取过程中多次重复使用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号