首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
肝素钠生产废水中Cl-含量及盐度均较多,并且w(蛋白质)为1.68%,ρ(CODCr)为31 968 mg/g,处理难度大.为探究其净化和回收蛋白的方法,首先对FeCl3·6H2O、FeSO4·7H2O、KAl(SO4)·12H2O进行粗筛,选择FeCl3·6H2O为无害蛋白絮凝剂;再通过单因素试验和Box-Benhnken-Design响应面法,考察了FeCl3·6H2O投加量、膨润土投加量、硅藻土投加量及pH对蛋白沉淀量的影响及交互作用;建立了蛋白回收的数学模型.结果表明,各因素对蛋白沉淀量的影响为:X2X4(硅藻土投加量与pH的交互项)>X4(硅藻土投加量)>X1X3(FeCl3·6H2O投加量与膨润土的交互项)>X1(FeCl3·6H2O投加量)>X1X4(FeCl3·6H2O投加量与硅藻土投加量的交互项);在最佳反应条件(pH为7.5,FeCl3·6H2O添加量为0.38%,膨润土投加量为1.90%,硅藻土添加量为4.25%)下蛋白沉淀量达0.82%,与预测值的偏差为3.50%.研究显示,在最佳反应条件下CODCr去除率达80.94%,减轻了废水后期的处理难度.   相似文献   

2.
Fenton法处理腈纶聚合废水   总被引:5,自引:2,他引:3  
采用Fenton法处理腈纶聚合废水,考察药剂、反应条件等对处理效果的影响,并分析了其作用机理,确定了反应过程中的关键控制因素. 结果表明:Fenton法处理腈纶聚合废水时,影响CODCr去除率的因素依次为c(H2O2)>反应时间>pH>c(Fe2+);最佳试验条件〔c(H2O2)为0.2 mol/L, c(Fe2+)为28.8 mmol/L, pH为2.5, 反应时间为150 min〕下处理腈纶聚合废水时,进水ρ(CODCr),ρ(BOD5)和ρ(丙烯腈)分别为1 200.0,242.1和97.4 mg/L,出水分别为301.6,110.0和0 mg/L,去除率分别为74.9%,55.0%和100.0%,ρ(BOD5)/ρ(CODCr)由0.2提高到0.36,废水可生化性显著提高,特征污染物丙烯腈得到有效去除.   相似文献   

3.
Fenton法深度处理腈纶废水的特性   总被引:1,自引:0,他引:1  
研究Fenton法深度处理难降解腈纶废水的影响因素及其优化反应条件,应用紫外和三维荧光光谱探讨腈纶废水生化出水中污染物的去除规律. 研究表明:初始pH由1.5升至6.0时,CODCr去除率由20.0%快速升至61.8%后再缓慢降至51.0%;c(Fe2+)由0.8 mmol/L增至10.8 mmol/L时,CODCr去除率先由2.5%增至58.0%再缓慢降至55.5%;c(H2O2)和反应时间对CODCr去除率影响较小. 正交试验极差表明,CODCr去除率的影响因素为初始pH>c(Fe2+)>c(H2O2)>反应时间,最优条件〔c(Fe2+)为7.20 mmol/L、c(H2O2)为0.16 mol/L、初始pH约为3、反应时间为90 min〕下腈纶废水生化出水ρ(CODCr)由308 mg/L降至103 mg/L,去除率为66.5%. 紫外和三维荧光光谱显示,腈纶废水生化出水中的类蛋白类物质完全被去除,大部分可见腐殖质类物质以及UV腐殖质类物质也被分解.   相似文献   

4.
采用三维电极电Fenton法对制陶工艺含酚废水进行处理,选择pH、时间、电压、FeSO4·7H2O投放量、通气量、电解质投放量以及电极间距为单因素,设置不同水平,研究苯酚和COD的去除效果,同时探讨了该方法的电化学能耗。结果表明:在pH为3,电压为15 V,FeSO4·7H2O投放量为1.8 g/L,通气量为9 L/min,Na2SO4粉末投加量为1.0 g/L,电极间距取10 cm,反应120 min的条件下,废水中苯酚及COD去除率可分别达到94.13%和86.67%,处理效果明显,且能耗较二维电极大大减少,可为该方法在含酚废水处理领域的应用提供参考。  相似文献   

5.
Fenton法处理黄连素废水试验   总被引:3,自引:1,他引:2  
采用Fenton氧化法处理黄连素成品母液废水,考察初始pH、反应温度、反应时间、c(H2O2)以及c(FeSO4)对处理效果的影响. 通过正交试验分析了该法的作用机理,确定了反应过程中的关键控制因素.结果表明,Fenton法处理黄连素成品母液废水时,影响其CODCr去除率的因素依次为反应温度、c(H2O2)、初始pH、c(FeSO4)以及反应时间. 通过单因素试验确定其主要影响因素的最佳水平:初始pH为2,反应温度为40 ℃,反应时间为30 min,c(H2O2)为0.24 mol/L,c(FeSO4)为10 mmol/L. 该条件下CODCr和黄连素的去除率可分别达到44.1%和96.2%,ρ(BOD5)/ρ(CODCr)由小于0.05提高到0.3,废水可生化性显著提高.   相似文献   

6.
该文以NiCl2·6H2O和FeCl3·6H2O、NiCl2·6H2O和FeCl2·4H2O、NiSO4·6H2O和FeSO4·7H2O为3组反应物,NaOH为沉淀剂,采用共沉淀法制备催化材料NiFe2O4催化剂,比较3组反应物制备出的NiFe2O4催化剂对活化SPS降解RhB染料废水的效果,并对材料进行表征。结果显示,以NiCl2·6H2O和FeCl3·6H2O为反应物制备出的材料催化性能、形貌结构最优。以NiCl2·6H2O和FeCl3·6H2O为反应物,通过单因...  相似文献   

7.
三维电极处理腈纶聚合废水的条件优化研究   总被引:3,自引:2,他引:1  
采用填充粒状活性炭的三维电极处理腈纶聚合废水,考察实验条件对污染物去除效果的影响以及废水处理前后可生化性的变化.阳极为Ti/SnO2-Sb2O3网状极板,阴极为网状钛电极,分别考察了停留时间、 电解电压、 pH值、 曝气量对废水中污染物去除效果的影响.结果表明,电解电压和pH值对废水有机物的去除率影响较大,在最优实验条件:电解电压为15V,pH值为3,曝气量400 mL/min的条件下电解120 min,腈纶聚合废水的COD、 TOC和丙烯腈的去除率分别为32.59%、 22.17%和89.70%,并且经过电解处理,废水BOD5/COD值从0.02上升至0.42,可生化性显著提高,为生物处理提供了条件.  相似文献   

8.
为获得多孔纳米CeO2(氧化铈),以淀粉为生物模板,以Ce(NO33·6H2O为铈源,在温和条件下制备出海绵状的多孔纳米CeO2,同时考察了焙烧温度、碱液、铈源投加量对样品形貌的影响.利用XRD(X射线衍射光谱)、SEM(扫描电镜)、N2吸附-脱附等表征手段对合成的多孔纳米CeO2进行物相组成、微观形貌及孔径大小分布的分析.通过湿式催化过氧化试验,探究其对腈纶废水中有机物CODCr的催化降解性能.结果表明:①所制备的多孔纳米CeO2具有多孔结构,孔径分布范围为2~4 nm,孔容为0.225 cm3/g,BET比表面积为256.426 m2/g;②多孔纳米CeO2的最佳制备条件为1 g淀粉溶解于20 mL水中,加入0.02 mol Ce(NO33·6H2O,以5%的氨水调节前驱体混合液pH,以1℃/min升至400℃,焙烧4 h,得到海绵状的多孔纳米CeO2.③以不同形貌的CeO2作为湿式催化反应中的催化剂,催化降解腈纶废水中有机物,其中以制备的多孔纳米CeO2催化性能最佳,CODCr去除率可达82.5%.研究显示,焙烧温度、碱液、铈源投加量均可影响样品的形貌,在湿式催化过氧化处理腈纶废水试验中,多孔纳米CeO2能显著提高废水CODCr的去除率.   相似文献   

9.
以酸性高As废水为处理对象,利用硫化法去除并回收As,研究了Na2S·9H2O投加量、反应初始pH、反应时间、Na2S·9H2O投加方式对As去除效果的影响,并通过XRD(X射线衍射)、XRF(X射线荧光光谱分析)对回收的As渣进行分析;对处理后的含As废水,利用高聚复配絮凝剂深度脱As,研究了絮凝剂优化条件、絮凝剂投加量、反应pH对深度脱As的影响并与常见絮凝剂进行对比. 结果表明,Na2S·9H2O投加量为55g/L、两段投加、反应时间为5min、初始pH为2.0的条件下可达最佳除As效果,处理后As回收率达98%以上,出水ρ(As)为0.61g/L,As渣中w(As)、w(S)分别达49.15%、40.98%,其他重金属元素几乎未检出. 在絮凝剂n(Fe)∶n(Si)=5∶1、投加量为7mL/L、pH为8的条件下可得最优深度脱As效果,出水ρ(As)低于0.3mg/L,同等条件下优于常规絮凝剂处理效果. 多批次扩大试验结果表明,组合技术处理废水水质稳定,As回收率平均可达98%以上,出水ρ(As)低于0.3mg/L.   相似文献   

10.
Fenton法处理类长填龄渗滤液的氧化和絮凝作用   总被引:13,自引:6,他引:7  
采用Fenton法对难降解的类长填龄渗滤液进行处理,考察其氧化和絮凝作用对有机物去除的贡献. 结果表明:以CODCr去除率最大为目标,试验在最优条件下,c(H2O2)/c(Fe2+)为7.0,Fe2+投加量(c(Fe2+))为60 mmol/L,pH为3.0,此时CODCr总去除率为60%;其中氧化作用去除率为44%,氧化和絮凝作用的效率比为2.7. c(H2O2)/c(Fe2+),c(Fe2+)和pH的变化对氧化和絮凝作用有明显影响,氧化作用对CODCr去除率随H2O2投加量增大而增大.絮凝作用对CODCr的去除率不仅受Fe2+投加量直接影响,随其增加而增大;还间接受氧化作用去除率影响,氧化作用去除率越大,剩余有机物大分子所占比例降低,絮凝作用对有机物的去除率越低.   相似文献   

11.
铁促电解法处理垃圾渗滤液中有机污染物   总被引:1,自引:0,他引:1       下载免费PDF全文
采用铁促电解法处理垃圾填埋场渗滤液;考察了FeSO4浓度、初始pH值、电流(电压)对污染物去除的影响.结果表明,与传统电解氧化降解有机物相比,铁促电解显著提高了有机污染物的去除效率;FeSO4浓度越大,有机物去除效果越高;电解介质合理的初始pH值为3.0~4.0;铁促电解对渗滤液CODCr与NH3-N的去除率分别为68.37%,89.07%,色度和浊度的去除率大于98%.  相似文献   

12.
复极性三维电极技术深度处理焦化废水的研究   总被引:4,自引:0,他引:4  
采用复极性三维电极技术对焦化废水进行了深度处理的实验研究,取得了相应的工艺参数。研究结果表明,复极性三维电极技术能有效的处理焦化废水,在反应时间为60min,槽电压为10V,气液比为60:1,pH为8,活性碳量为115g/L,液体催化剂用量为150m/L时,复极性三维电极技术能使焦化废水CODCr去除率达70%以上。  相似文献   

13.
Fenton试剂处理酸性玫瑰红B的研究   总被引:7,自引:0,他引:7  
采用Fenton试剂处理酸性玫瑰红B染料废水,考察了FeSO4投加量、H2O2投加量、pH值和反应时间对处理效果的影响,研究了原水的氧化还原电位和TOC的变化规律,评价了它的可生化性。结果表明,最佳pH值为3,FeSO4的适宜投加量为8mmol/L,H2O2最佳投加量为50mmol/L,此时COD去除率和脱色率分别为77.1%和92.8%,处理后该染料废水的可生化性大大提高。  相似文献   

14.
电化学氧化预处理垃圾渗滤液的实验研究   总被引:1,自引:0,他引:1  
随着工业和城市的发展,难生物降解的有机物种类与数量日益增加,电催化氧化技术由于其对有机物具有特殊的降解机理和能力,被水处理界寄予厚望。本研究利用电化学氧化技术,以气体扩散电极为阴极,不锈钢板为阳极,向电解槽中通入空气,改变反应条件,对垃圾渗滤液进行了降解研究。最佳工艺条件为:电流密度=30mA·cm^-2、电极距d=2 cm、pH=3.5、[Cl^-]=6000 mg·L^-1、投加的FeSO4.H2O=0.80 g,在此条件下废水CODcr去除率达75.62%。  相似文献   

15.
Fenton化学氧化法深度处理精细化工废水   总被引:14,自引:1,他引:13  
根据某精细化工厂的废水经过长时间的厌氧-好氧生化处理,难以进一步生物降解的特点,采用Fenton试剂进行高级氧化处理。通过实验探讨了不同的H2O2和Fe2+浓度、反应时间、pH等因素对二级生化出水COD去除率的影响。在H2O2投加量为18mmol/L,FeSO·47H2O投加量为12mmol/L,反应时间1.5h,废水的pH=4的条件下,二级生化出水的COD去除率达到82.61%,降到100mg/L以内,达到国家一级排放标准。  相似文献   

16.
Ti/RuO_2电极电催化脱除罗丹明B色度的研究   总被引:6,自引:0,他引:6  
在阳极和阴极均为Ti RuO2 的无隔膜电解槽内 ,对罗丹明B的电化学脱色效果进行了研究 ,探讨了外加电压、电解质浓度、反应时间、溶液的初始pH、罗丹明B浓度以及NaCl的投加量对罗丹明B脱色的影响。研究结果表明 ,增加电压、提高电解质浓度、降低溶液pH、延长反应时间有利于罗丹明B色度的脱除 :相同条件下 ,溶液浓度越低 ,罗丹明B的电化学脱色效果越好。对于含 2 0mg L的罗丹明B溶液 ,当电解质Na2 SO4 浓度为 0 1mol L、溶液pH =2、外加电压为 8V ,电解6 0min ,溶液的脱色率即达到 95 % ;如果溶液中加入 6 0mg LNaCl,只需电解 30min ,罗丹明B溶液的脱色率即达到 96 %。  相似文献   

17.
采用Fenton试剂絮凝氧化法预处理皂素废水,考察了H2O2投加量、FeSO4·7H2O投加量、pH值和搅拌时间4个因素,研究其对废水中COD去除效果的影响,实验结果表明反应的最佳条件为:pH为4,H2O2投加量为18mL/L,FeSO4·7H2O投加量为7g/L,搅拌时间为45min,对COD的去除率可达到42.60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号