首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
稳定同位素示踪技术是河流水文过程研究的重要方式,可以用来判定河流补给的来源、研究河流与其它水体相互作用、示踪水文循环过程等。本文采用TC/EA-IRMS分析法对拉萨河水体的氢氧同位素进行测定,分析了δD和δ~(18)O的含量及空间分布特征,并分析了拉萨河的同位素效应,包括与大气降水氢氧同位素的关系、氢氧同位素的沿程变化特征、氘过量参数沿程变化、高程效应及大陆效应等。结果表明:拉萨河水体受补给来源、大陆效应、高程效应等因素影响,其水体氢氧同位素也呈现出不同的特征。整体而言,拉萨河水体δD和δ~(18)O随沿程距离增大而下降;δD和δ~(18)O均分布在全球大气降水线和青藏高原东部大气降水线附近,表明大气降水是拉萨河流域主要的补给来源;拉萨河水体的氘过剩参数均大于10‰,且远超全球大气降水线对应的氘过剩参数,说明拉萨河可能存在接受氢氧同位素较贫化的冰雪融水补给。  相似文献   

2.
借助氢氧同位素和水化学方法对南太行山山前平原地下水补给运移规律进行研究,阐明人类活动对地下水的影响过程。研究结果表明:(1)区内不同水体δD、δ~(18)O、氘盈余值(d-excess)和氚同位素(T)值差异明显,深层地下水均值分别为-74.0‰、-9.4‰、1.5‰和8.73TU,浅层地下水均值分别为-72.1‰、-8.8‰、-1.9‰和17.46TU,河水均值分别为-71.3‰、-8.9‰、-0.4‰和18.60TU,工业废水均值分别为-68.3‰、-7.2‰、-10.7‰和21.11TU;(2)补给区深层地下水δD、δ~(18)O和d-excess年均值分别为-68.08‰、-9.24‰和5.84‰,径流区深层地下水δD、δ~(18)O和d-excess年均值分别为-62.30‰、-8.50‰和5.66‰,排泄区深层地下水δD、δ~(18)O和d-excess年均值分别为-75.14‰、-10.26‰和6.94‰;(3)深层地下水补给源包括大气降水和河水,受污染河水通过断层导水裂隙带补给深层地下水。浅层地下水补给源包括大气降水和河水,受污染河水通过河流侧渗方式补给浅层地下水;(4)受河水影响的深层地下水氘盈余值变低,T含量升高,因此结合氘盈余值与T含量可以很好地识别区内深层地下水污染过程。  相似文献   

3.
典型温冰川区湖泊的稳定同位素空间分布特征   总被引:4,自引:2,他引:2  
2014年8月对拉市海表层及不同深度湖水进行采样,分析拉市海湖水的氢氧稳定同位素的空间变化及其影响因素,探讨典型温冰川区域湖泊的水文补给特征.结果表明,拉市海表层湖水的δ~(18)O、δD值分别在-12.98‰~8.16‰和-99.42‰~-73.78‰之间波动,平均值分别为-9.75‰和-82.23‰;表层湖水的δ~(18)O及过量氘表现出相反的空间变化特征,有河水注入的区域δ~(18)O值较低而过量氘值较高;垂直方向上过量氘随深度变化较小,表明湖水在垂直方向上混合较充分,不同深度层上过量氘表现出自东向西先增大后减小的变化趋势,这可能与入湖河流的分布、湖泊所处的地理位置及自然条件等密切相关;同位素对比研究发现,拉市海的主要补给源为大气降水及河水,冰雪融水可能间接补给拉市海;对拉市海与青藏高原地区典型湖泊和非冰川区湖泊的氧同位素组成对比发现,冰川区湖泊中稳定同位素表现出明显的高程效应(拉市海除外),δ~(18)O随海拔升高而降低.非冰川区湖泊蒸发效应较为明显,同位素值明显偏正.  相似文献   

4.
基于长江源区冬克玛底流域2017年6~9月采集的84个地下水样品,分析了地下水稳定同位素特征及其影响因素,讨论了地下水的补给来源.结果表明,研究区多年冻土区地下水δ~(18)O的变化范围为-15. 3‰~-12. 5‰,平均值为-14. 0‰;δD的变化范围为-108. 9‰~-91. 7‰,平均值为-100. 2‰,与当地大气降水相比,地下水较为富集重同位素;地下水线(LG)的斜率和截距均低于全球和局地大气降水线(GMWL和LMWL),表明地下水在接受降水的补给后经历了不同程度的蒸发作用;地下水氘盈余(d-excess)变化范围为4. 9‰~25. 0‰,平均值为11. 6‰,低于大气降水平均氘盈余值;地下水同位素与降水量存在显著的负相关关系,表明大气降水对地下水具有重要的补给作用;不同时期影响地下水同位素的组成和变化因素有所不同,在冻土的冻融前期(气温上升阶段),由于冻土活动层较薄,地下水受气温影响显著.虽然后期气温降低,但冻土活动层厚度依然在增加,此时地下水在土壤中滞留的时间的增加是地下水同位素富集的一个重要因素.结合流域的地形特点、地下水同位素特征及其影响因素,推断降水是地下水的主要补给来源.研究结果能够为长江源多年冻土区的水循环过程提供科学依据.  相似文献   

5.
利用全球降水同位素观测网(GNIP)所提供的数据,研究了位于长江流域的南京、武汉、成都、昆明4个站点大气降水δ~(18)O及其相关要素的时空分布特征。对长江流域4站点大气降水中的δ~(18)O与气温、降水量、在不同时间尺度下的相关关系进行了分析与研究,提出长江流域的大气降水线方程并与全球及我国大气降水线相比较。结果表明,4站点δ~(18)O与δD年平均值波动较小,而多年月平均值波动较大,其中昆明波动最大。季节尺度下,长江流域大气降水中δ~(18)O在干季具有显著的温度效应,在湿季具有降水量效应;年尺度下,长江流域具有降水量效应。与全球大气降水线相比,长江流域大气降水线的斜率与截距都要偏小,尤其是截距偏低很多。利用HYSPLIT模型对南京与昆明站点1991年夏季水汽路径进行聚类分析,其分析结果与大气降水线及氘盈余分析结果一致,即站点存在不同水汽来源。  相似文献   

6.
长江源区降水氢氧稳定同位素特征及水汽来源   总被引:6,自引:4,他引:2  
基于长江源区冬克玛底流域2014年5~10月连续采集的73个降水同位素数据,结合相关气象资料,分析了降水中δD、δ~(18)O及氘盈余(d-excess)变化特征,讨论了δ~(18)O与气温、降水量的关系,利用HYSPLIT模型追踪流域降水的水汽来源并估算不同水汽来源对降水量的贡献比例.结果表明:研究区降水中δ~(18)O和δD变化范围分别为-26.5‰~1.9‰和-195.2‰~34.0‰,且δ~(18)O和δD值随时间变化波动较大,与不同来源水汽输送有直接的关系;区域降水线的斜率和截距均大于全球大气降水线,与青藏高原北侧地区的降水线相近;不同降水类型中的δ~(18)O和δD的关系差异显著,主要与水汽来源和形成降水时的气象条件有关;由于受局地蒸发水汽及水汽输送过程影响,流域大气降水d-excess值整体上相对偏大;研究区的降水同位素存在显著的降水量效应,但不存在温度效应,表明降水量对大气降水中稳定同位素含量的控制作用更强;水汽来源轨迹表明,研究区大气降水水汽来源主要有西南季风携带的海洋性水汽、局地蒸发水汽及西风输送水汽,对降水量的贡献比例分别为43%、36%和21%.该研究结果有助于进一步了解长江源头区冬克玛底流域的大气环流特征及水循环过程.  相似文献   

7.
上海降水中氢氧同位素特征及与ENSO的关系   总被引:8,自引:4,他引:4  
基于收集2014年8月至2015年8月上海70个降水样品,分析上海降水同位素特征与温度、降水量的相关关系,分析不同时间尺度下降水中δ~(18)O、氘盈余与ENSO事件的联系.结果表明上海地区大气降水中δD与δ~(18)O冬春较高,夏秋较低.上海大气降水线方程截距和斜率比全球降水线方程偏小,可能是因为降水过程中受到不平衡的二次蒸发.在不同的时间尺度下,上海地区降水中δ~(18)O与气温和降水量具有不同的相关关系,冬季存在着较弱的温度效应,而全年呈现出较显著的降水量效应,受大气环流过程影响明显.取样期间,降水中δ~(18)O与d值(过量氘)清晰记录了La Ni1a向El Ni1o之间的过渡,拉尼娜期间,降水中δ~(18)O与d值偏负;El Ni1o期间,δ~(18)O与d值偏正.  相似文献   

8.
温艳茹  王建力 《环境科学》2016,37(7):2462-2469
根据2015年4~10月重庆地区61场降水稳定同位素资料与相关气象资料,分析了不同时间尺度下重庆大气降水中氢氧同位素(δD、δ~(18)O)、过量氘(d)的变化特征以及它们与降水量、温度及厄尔尼诺/拉尼娜和南方涛动(ENSO)的关系.结果表明:1研究区大气降水线方程为:δD=8.28δ~(18)O+12.34(r=0.99,n=61),其斜率和截距与中国东部季风区的多处南方地区大气降水线方程的斜率和截距相似.2研究区大气降水中氢氧同位素和d均出现夏半年低、冬半年高的季节变化,影响重庆降水中氢氧同位素变化的主要原因为不同季节降水的水汽来源及气团性质的差异.3监测时段内研究区大气降水中δ~(18)O与温度、降水量相关性不显著(r=0.03;r=0.12),但却敏感响应了大气环流过程,表现出与ENSO正相关.大气降水中δ~(18)O和过量氘(d)清晰记录了2014~2015年LaNia和ElNio的转换过程.ElNio期间研究区域大气降水中δ~(18)O和d明显偏重;而在LaNia期间,δ~(18)O和d偏轻.  相似文献   

9.
为了解高放废物处置库北山预选区深部地下水是否会通过断裂流入河西走廊地区,危害当地的生态环境和人民安全,本文以北山预选区及其邻区为研究对象,利用同位素地球化学方法,建立了研究区当地大气降水线方程和同位素高程效应方程,通过对比两个系统地下水δD、δ~(18)O值和氘盈余特征的差异,确定北山地区与走廊地区的深部地下水具有不同的起源,即北山预选区深部地下水起源于地质历史时期受到过强烈蒸发的大气降水,祁连山北麓-河西走廊地区地下水呈现出典型的现代大气降水补给特征,没有表现出明显的蒸发特征,氢、氧稳定同位素特征表明北山预选区深部地下水并未进入走廊地区,为高放废物处置库的选址工作提供一定的理论依据。  相似文献   

10.
降水氢氧稳定同位素组分是一种良好的示踪剂,对水汽循环的研究有重要意义.本研究基于2016年在南京、溧阳、宜兴和东山这4个站点按降水事件采集的降水样品,测定了降水HDO和H_2~(18)O组分,分析了降水HDO、H_2~(18)O组分以及过量氘的时间变化特征;探讨了水汽源地和局地蒸发对降水稳定同位素组分的影响.结果表明:(1)冬夏季风期间水汽源地的差异使4个站点降水HDO、H_2~(18)O组分及过量氘有明显的季节变化,主要表现为HDO和H_2~(18)O组分夏季风期间贫化,冬季风期间富集;过量氘夏季风期间小于冬季风期间;(2)夏季风期间,太湖蒸发补给使下游地区的降水过量氘变大,局地大气降水线方程的截距变高;冬季风期间,局地蒸发对降水同位素影响很小,降水HDO、H_2~(18)O组分以及过量氘的空间变化不明显;(3) 4个站点局地大气降水线方程的斜率和截距均较高,原因可能是冬夏季风期间的降水水汽来源的差异和冬季风期间水汽再循环过程的影响.  相似文献   

11.
南小河沟流域为典型的黄土高原沟壑区,本文分析了该流域地表水和地下水的氢氧稳定同位素和水化学特征,揭示了地表水与地下水之间的相互关系.结果表明,大气降水的δD和δ~(18)O值呈现春夏高,秋冬低的季节变化特征.水库水的δD和δ~(18)O值的季节性变化规律呈现夏秋高、冬春低的特征.地下水的δD和δ~(18)O值季节性变化规律相对不显著.流域内地表水和地下水水化学类型主要为Na·Mg-HCO_3型.地表水和地下水电导率的季节性变化规律均呈现冬季高、夏季低的特点.当地大气降水和深层地下水可能是南小河沟流域内地表水(水库水、沟道水)和泉水的主要补给来源.流域内的常流泉可能主要由深层地下水补给,而季节泉,例如,董庄沟和杨家沟的源头泉则可能是由深层地下水和当地大气降水共同补给.  相似文献   

12.
采用环境同位素和水化学方法,通过分析南太行山山前平原不同类型水体氢氧稳定同位素(δD和δ18O)、溶解性无机碳同位素(δ~(13)C-DIC)和水化学组成特征,探讨不同水体来源以及人类活动对地下水水质的影响过程。研究区地下水氢氧同位素组成表明,区内地下水均来自大气降水,补给区和排泄区浅部含水层地下水较深部含水层地下水氢、氧同位素值均偏正,氘盈余值(d值)也偏小,显示浅部含水层地下水受蒸发作用影响。同时排泄区地下水氢、氧同位素值较补给区地下水偏正,显示排泄区地下水经历较明显的蒸发过程。研究区地下水溶解性无机碳碳同位素(δ~(13)C-DIC)组成表明,补给区和排泄区浅部含水层地下水δ~(13)C-DIC值较深部含水层δ~(13)C-DIC值均偏负,显示浅部含水层地下水无机碳更多来源于有机物分解。同时排泄区地下水δ~(13)C-DIC值较补给区地下水δ~(13)C-DIC值偏负,表明排泄区地下水溶解性无机碳受有机物分解影响较大。研究区地下水水化学组成表明,补给区地下水水化学类型以Ca-HCO3型为主,排泄区地下水水化学类型以Na-HCO3-SO4型为主。结合同位素组成特征,补给区地下水水化学组成主要受溶滤作用和人类活动的影响,排泄区地下水水化学组成则受溶滤作用、蒸发浓缩作用、阳离子交换作用和人类活动的共同控制。  相似文献   

13.
江苏洋口港地区是江苏沿海开发重点建设的深水港区,水质优良的地下水是港区经济社会发展的重要基础.本研究利用近期获得的钻孔剖面地层对比数据资料,沿水文径流剖面分层采集水样,通过识别地表水、各含水层地下水的环境同位素(δD、δ~(18)O、~3H、~(14)C)组成指纹特征,以揭示研究区地下水的形成演化规律.结果表明,研究区浅层地下水主要来源于现代大气降水的入渗补给,大气降水在补给地下水过程中经历了明显的蒸发过程;研究区深层地下水的放射性~(14)C年龄主要为15000~26000 a,其稳定同位素δ~(18)O、δD值比现代降水低,是晚更新世末次冰期(大理冰期)的盛冰期降水入渗补给.地下水含水层的氘、氧、碳同位素分布具有明显的呈层性,随着地下水埋藏深度增加,地下水中的δD、δ~(18)O值呈下降趋势.浅层地下水与地表水水力联系紧密,可更新能力较强;深层地下水径流缓慢,总体上处于封闭-半封闭状态,可更新能力弱.江苏沿海平原天然地下水流动是自晚更新世末期以来,伴随着冰退、海平面上升而调整到目前的模式.末次盛冰期以来的自然地理及地质发展史,决定着研究区第四系地下水流系统的演变格局,现代人类活动加强了浅层与深层地下水之间的水力联系.研究在高强度开发地下水条件下的区域水文循环特征,可为沿海地区地下水演变机理和调控研究提供技术支持.  相似文献   

14.
大气降水稳定同位素受温度、雨量、海拔高程、水汽源等多种因素控制,进而影响洞穴水及沉积物的同位素变化.为了更好地认识我国南北交汇带季风敏感区洞穴水对降水的响应过程,本研究分析了2015年8月4~6日河南栾川县鸡冠洞强降雨和洞内4处地下水点样品,并结合2009~2015年栾川地区近6年大气降水氧氘同位素数据研究发现:1采用HYSPLIT模型可以将鸡冠洞强降雨划分为不同水汽来源的2个阶段:高空来自南中国海的水汽以及近地面来自内陆局地蒸发的水汽,并且可以记录在单场降雨期间雨水的δ~(18)O变化特征上.2近地面来自内陆局地蒸发水汽的蒸发过程一定程度上掩盖了温度效应,并使局地大气降水线的斜率、截距和雨水过量氘均减小.3此次降雨期间鸡冠洞洞穴滴水δ~(18)O特征主要响应夏季风海源水汽的降水;鸡冠洞洞穴滴水对降雨响应最快,间隔时间约为3 h,滴水δ~(18)O随滴率升高变重,之后缓慢变轻;地下河具有相似的模式,稍有滞后;靠近洞口的池水反映出不同阶段的雨水δ~(18)O变化的差异.  相似文献   

15.
为探究关中平原降水氢氧稳定同位素特征及其水汽来源,本研究选取关中腹地的杨凌站点次降水为研究对象,利用当地2015~2018年间的98场次降水样品及同期气象资料,分析该地区降水氢氧稳定同位素(δ~2H、δ~(18)O和δ~(17)O)组成特征及其影响因素,建立当地大气降水线和三氧同位素大气降水线方程,并利用δ~(18)O、d-excess和~(17)O-excess指标尝试探讨当地可能存在的降水水汽来源,定量描述海洋和内陆源水汽对区域降水的贡献.结果表明,杨凌地区降水氢氧稳定同位素存在明显的季节性变化,同位素组成雨季(5~10月)贫化,旱季(11月~次年4月)富集;当地大气降水线的斜率和截距分别为7.7和9.1,说明研究区降水受到一定程度的蒸发分馏影响;三氧同位素大气降水线斜率为0.528,介于海水平衡分馏斜率(0.529)与水汽扩散斜率(0.518)之间,表明研究区处于海洋气团向内陆干旱区迁移的路径上.综合分析δ~(18)O、d-excess和~(17)O-excess,发现研究区降水受到来自东南季风的暖湿气团和来自西风的干冷气团的共同贡献,其中约有55%~79%的降水水汽来源于海洋,主要集中于6~8月; 21%~45%的水汽来源于内陆和局地蒸发,主要集中于10月~次年4月. 5月和9月降水水汽来源复杂,可能受海洋水汽和内陆水汽的共同补给.  相似文献   

16.
基于原位试验场地,本研究通过对土壤含水率、温度和地下水位、温度、电导率的测量,分析了2017年2月~5月长春市融雪水补给地下水过程,并运用氢氧稳定同位素技术对补给过程进行证明。结果表明,当地大气降水线为δD=7. 53δ~(18)O-3. 41(R~2=0. 76)。在δD-δ~(18)O关系图中,地下水各水样点主要分布在当地大气降水线附近,说明地下水主要受融雪水补给。融雪水对地下水的主要补给时间为气温保持在0℃左右的20余天内,地下水位上升幅度能达到0. 6 m。在此阶段,地下水位与地下水温度和电导率具有显著相关性,相关系数均在0. 9以上。之后由于春季工农业用水增加,水位开始下降。在整个过程中,融雪水对地下水的贡献率为20. 1%。黄土地层的田间持水率约为39%。  相似文献   

17.
景观带尺度高寒区水文特征时空变化规律研究   总被引:4,自引:3,他引:1  
目前高寒区景观带尺度水文规律的研究还非常薄弱.同位素技术被用来甄别高寒区不同景观带冰川、积雪、冻土、地表水、地下水和降雨等对径流的贡献组合及其时空变化规律,旨在揭示各景观带的水文规律.结果表明马粪沟流域雨季降雨量大,温度效应显著,易发生再次蒸发,致使各水体δ18O和δD较高.干季气温低,降水多为固态,蒸发弱,不易受到再次蒸发和周围水汽交换影响,致使各水体δ18O和δD相对偏负.降雨和各水体在雨季富集重D和18O,干季较贫重同位素,存在季节效应.降雨存在高程效应,δ18O=-0.005 2 H-8.951,R=-0.917 2;δD=-0.018 5 H-34.873,R=-0.876 3.流域各景观带各水体在雨季和干季均不存在高程效应,是因为出山径流均非以降雨直接补给为主,受冰川、积雪和冻土等冻融过程影响,降水、融水、地表水与地下水等相互转化,导致同位素特征发生变化,混合和蒸发效应是其同位素变化的主要控制因素.  相似文献   

18.
采集厦门地区6个站位春、夏和冬季的大气降水样品,并用稳定同位素质谱仪分析降水样品中的氢氧同位素值(δD和δ18O).结果表明:厦门地区大气降水中δD和δ18O值春季最高(-7.86‰±8.07‰和-2.18‰±0.80‰),夏季最低(-61.17‰±4.85‰和-8.42‰±0.62‰).本文同时利用HYSPLIT模型对不同季节厦门地区水汽来源及输送路径进行追踪,发现厦门地区夏季降水主要受到来自南海及西太平洋气团的影响,期间降水量大,δD和δ18O值较低.厦门地区大气降水线方程为δD=8.35δ18O+12.52(R2=0.906),与全球降水线方程(δD=8.17δ18O+10.56)相比,截距及斜率略有偏高.厦门地区氘剩余值(d值)波动范围较大(-5.13‰~32.25‰),说明厦门地区降水的水汽来源较为多样,降雨条件较为复杂.厦门地区降水中d值表现为冬季高,春季次之,夏季低的季节性变化特征.年尺度下,厦门地区氢氧同位素与降水量在呈显著的负相关关系(r分别为-0.477和-0.369,p0.01).  相似文献   

19.
柴达木盆地东部降水氢氧同位素特征与水汽来源   总被引:8,自引:4,他引:4  
朱建佳  陈辉  巩国丽 《环境科学》2015,36(8):2784-2790
稳定性氢氧同位素可以作为示踪剂来判断大气降水的水汽来源.本研究选择柴达木盆地南部的格尔木和东北部的德令哈两个区域,在分析这两个地区2010年6~9月降水同位素组成特征、时间变化以及降水中δD与δ18O关系的基础上,探讨柴达木盆地降水的水汽来源.结果表明:1格尔木和德令哈地区6~9月大气降水线分别为,格尔木:δD=7.840δ18O-4.566(R2=0.918,P0.001),德令哈:δD=7.833δ18O+8.606(R2=0.986,P0.001).两地区6~9月大气降水线的斜率和截距均低于全球大气降水线,而格尔木地区的截距仅为-4.566,反映出格尔木极其干旱的气候特点.2格尔木降水的δ18O在7月初较高,表现出一定的重同位素富集;在7月中下旬至9月初,δ18O较低;9月中下旬更低.德令哈降水的δ18O在6~8月相对较高,9月中下旬较低.3格尔木和德令哈地区水汽来源有一定的差异,格尔木地区可能是西南季风能够到达青藏高原的北部边界,德令哈地区水汽来源主要为局地蒸发.  相似文献   

20.
在研究云南会泽铅锌矿区水文地质调查的基础上,通过对地表水、地下水的氢氧稳定同位素(δD、δ18O)和放射性同位素氚(T)取样测试,分析了矿山深部地下水的补给来源、水力联系及年龄。研究表明:矿区地下水的补给来源主要为大气降水;矿区浅层地下水氚年龄小于30 a,深部中段地下水氚年龄在40 a左右及以上,地下水年龄由浅部到深部逐渐变老;由矿区浅部到深部中段,地下水的循环交替及可更新能力逐渐减弱,深部中段开拓将以消耗地下水静储量为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号