首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
苏昕  贺克斌  张强 《环境科学研究》2013,26(9):1022-1028
随着中国能源消耗和国际贸易的快速增长,中国国际贸易尤其是中美贸易对气候变化的影响受到了广泛关注,但国际贸易对于大气污染的影响却鲜见系统研究. 基于环境投入产出法和结构分解分析法,采用基于技术的、自下而上的大气污染物排放清单,探讨了中美贸易隐含的大气污染物排放问题. 结果表明:由于中国对美国出口贸易顺差较大且商品污染物排放强度较高,造成了中国对美国的出口贸易隐含着较大的污染物排放逆差. 2007年中国对美国出口贸易隐含的SO2、NOx和PM2.5的排放逆差分别为174.26×104、131.15×104和46.88×104t. 有行业针对性的污染物减排措施可以降低中美贸易隐含的污染物排放量;1997—2007年污染物燃烧排放因子和非燃烧直接排放强度的下降就可使出口贸易隐含的SO2和PM2.5排放量降低96.41%和226.26%. 占出口份额最高的机械类制造品的SO2、NOx和PM2.5排放强度分别为72.63、58.38和20.74t/108元,低于所有出口商品的污染物排放强度的平均值, 中国应加强这种高附加值、低污染物排放的商品出口.   相似文献   

2.
自下而上建立2018年中国高分辨率钢铁企业大气污染物排放清单(HSEC,2018),定量模拟中国钢铁企业2018年和未来年情景下排放各种大气污染物对环境的影响情况.结果表明:2018年,中国钢铁行业共排放SO2、NOx、PM10、PM2.5、PCDD/Fs、VOCs、CO、BC、OC、EC、氟化物分别为29.02万t、66.57万t、28.73万t、11.69万t、2.24kg、89.21万t、4057.49万t、0.45万t、0.61万t、0.06万t、0.88万t,焦化、烧结、球团、高炉4个铁前工序是中国钢铁行业大气污染物主要排放环节,中国钢铁行业对各省份SO2、NOx、PM2.5年均浓度贡献比例平均值分别为2.85%、3.37%、1.54%;未来年,中国钢铁企业SO2、NOx、PM10排放量分别为4.94万t、7.58万t、4.11万t,分别下降了82.98%、88.61%、85.69%,中国钢铁行业对各省份SO2、NOx、PM2.5年均浓度贡献比例平均值分别为0.31%、0.22%、0.02%.  相似文献   

3.
常州市冬季大气污染特征及潜在源区分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视.   相似文献   

4.
分析了长江三角洲地区电厂排放的基本特征并利用WRF-Chem模拟冬季大气污染状况,研究了冬季电厂排放主要污染物的特征及其对空气质量的影响,结果显示,长三角电厂排放的主要大气污染物为SO2、NOx及PM2.5,2010年排放量可分别达到826.8、1475.6和137.3Gg,分别占长三角地区人为源总排放量的34%、38%和14%.冬季主要大气污染物(SO2、NO2、PM2.5)浓度高值区分布在南京-上海,杭州-宁波一带.电厂对SO2浓度贡献量(率)的空间分布与SO2排放的空间分布较为一致,而NO2、PM2.5,其贡献量(率)的高值区主要分布在安徽、浙江和江西的交界处以及浙江省的东海岸.相对SO2、NO2,电厂对PM2.5贡献量(率)较低,各地均在20μg/m3(15%)以下.污染时期电厂排放对模拟的PM2.5和SO2贡献率(6.9%、34.2%)较清洁时期(4.9%、20.7%)大,而对于NO2,清洁和污染时期的贡献量没有明显差别,均在10μg/m3左右.冬季气温低、风速小及边界层高度低的特征不利于低层污染物的扩散,易导致重污染事件的发生.  相似文献   

5.
刘晓  胡京南  王红梅  杨丽  张皓 《环境科学》2023,44(4):1924-1932
建材行业是典型的资源和能源消耗型产业,也是大气污染的主要排放源之一.中国作为全球最大的建材产品生产国和消费国,目前针对建材行业排放特征的研究总体较少,数据来源较为单一.以河南省建材行业为研究对象,首次将应急减排清单应用到排放清单构建中,通过对应急减排清单、排污许可和环境统计等多源数据的融合研究,完善和细化了建材行业活动水平数据,建立了更为精准的河南省建材行业排放清单.结果表明,2020年河南省建材行业的SO2、 NOx、一次PM2.5和PM10的排放量分别为21 788、 51 427、 10 107和14 471 t.其中,水泥和砖瓦是河南省建材行业大气污染物排放占比最高的2个行业,合计超过50%,水泥行业NOx排放问题较为突出,砖瓦行业整体治理水平比较落后.豫中和豫北是河南省建材行业排放贡献最高的地区,合计超过全省的60%.建议加快推进水泥行业超低排放改造,针对砖瓦等行业完善地方排放标准,持续提升建材行业大气污染治理水平.  相似文献   

6.
太原市居民生活燃煤大气污染物排放清单研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了科学计算居民生活燃煤对大气污染物排放的贡献率,建立了太原市居民生活燃煤的大气污染物排放清单.利用高分辨率遥感卫星影像、DEM(数字高程模型)和GIS(地理信息系统)对太原市平房空间分布及面积进行了解译,得到2016年太原市平原、山区、城乡区域平房面积.对平原农村、山区农村、城中村典型区域进行实地调查,统计不同区域户均平房面积和生活燃煤使用量,估算得到了平原农村、山区农村、城中村的生活燃煤使用量.结合相关文献测算的排放因子,计算太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量.结果表明:2016年太原市有22.8×104户燃煤散烧居民,2016年燃煤消耗量为109.6×104 t,平原和城乡居民是主要的生活燃煤用户也是居民生活燃煤大气污染物的主要排放源;太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量分别为9 666.7、7 518.6、8 110.4、1 753.6、657.6、153 549.6、3 419.5、2 882.5 t;2016年太原市清徐县和太原市城区居民煤炭消耗量合计达97.9×104 t,占全年燃煤总消耗量的88%.研究显示,太原市应加快煤改气、煤改电和集中供热建设,进一步推广清洁能源以期减小居民生活燃煤大气污染.   相似文献   

7.
为准确掌握荆州开发区大气污染物排放状况,该研究采用排放因子法,基于资料收集与实地调查结合的方式获取活动水平、文献调研选取排放系数,结合ArcGIS平台,建立了荆州开发区2019年1 km×1 km 10类排放源9种大气污染物排放清单。结果表明:开发区SO2、NOx、CO、VOCs、NH3、PM10、PM2.5、BC和OC的排放量分别为850.4、2 407.1、4 584.0、4 848.3、107.7、8 602.1、4 485.3、57.8和159.6 t。移动源是NOx的主要来源,占NOx总排放量的43.8%。固定燃烧源是CO的主要来源,占CO总排放量的81.5%。工艺过程源是SO2、VOCs、PM10、PM2.5和OC的主要来源,分别占SO2、VOCs、PM10、PM2.5和OC总排放量的50.9...  相似文献   

8.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

9.
衡水市作为"2+26"城市中典型的低GDP、高污染城市,其空气质量排名常年处于74个重点城市的后10位.自大气重污染成因与治理攻关项目工作开展以来,衡水市开展了大量污染成因研究及污染治理工作,已取得了较为明显的大气污染治理成效.从空气质量变化、排放源、污染物来源解析及气象条件与排放贡献等方面,梳理了衡水市大气污染成因研究及治理经验.结果表明:①衡水市的空气质量得到较大改善,PM10和PM2.5治理成效明显.2018年衡水市ρ(PM10)和ρ(PM2.5)年均值比2017年分别下降了25.12%和19.73%,比2013年分别下降了54.84%和51.22%,但O3污染形势逐渐严峻,以O3为首要污染物的天数由55 d(2013年)增至125 d(2018年).②相比于2016年,衡水市2017年SO2、NOx、CO、PM10、PM2.5、BC、OC、VOC的排放总量均大幅下降.③2013-2018年导致衡水市PM2.5下降的因素中,气象因素占8.0%,排放源因素占92.0%,说明衡水市通过减排措施改善空气质量的效果较为显著.④硝酸盐已经取代硫酸盐成为秋冬季颗粒物二次转化中最重要、占比最高的成分.研究显示,衡水市高ρ(PM2.5)主要以本地排放和临近地区输送为主,为有效控制衡水市PM2.5污染的发生与发展,应采取本地排放控制与"2+26"城市联防联控相结合的方案.   相似文献   

10.
气候变化对浙江省大气污染的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
开展气候变化对大气污染影响的研究有利于加深对大气污染形成机理的认识.利用1996-2015年浙江省大气成分、气象观测资料,分析气候变化对大气污染的影响.结果表明,近20 a来浙江省呈年高压天气日数增多、年均气温升高、降水集中及年均净辐射、日照时数、风速、气温日较差和水汽蒸发量都下降的气候变化事实.气候变化引起大气污染扩散能力下降,1996-2015年杭州市和浙江省年均大气扩散指数分别下降了0.55和0.81,降幅分别达35.71%和42.69%.大气扩散指数与ρ(PM10)、ρ(PM2.5)及年霾日数之间呈显著负相关,当大气扩散指数增大时,大气颗粒物浓度和年霾日数均下降,反之亦然.杭州市大气扩散指数与ρ(PM10)、ρ(PM2.5)之间的相关系数分别为0.73和0.76.杭州市和浙江省大气扩散指数与年霾日数之间的相关系数分别达到0.77和0.78,T检验值则分别为28.88和30.81,说明由气候变化引起的大气扩散能力改变是影响大气污染的重要原因,但不同大气成分受气候变化的影响程度不同.影响ρ(PM10)的关键气候要素是降水量、风速及相对湿度等,影响ρ(PM2.5)的主要是辐射、气温,影响ρ(SO2)的主要是气温,影响ρ(NO2)及ρ(NO3-)、ρ(NH4+)的主要是辐射.总体来说,浙江省近20 a的气候变化事实可能有利于促进ρ(PM10)、ρ(PM2.5)、ρ(NO2)及ρ(O3)等上升,促进ρ(SO2)、ρ(NO3-)、ρ(SO42-)、ρ(NH4+)等下降.   相似文献   

11.
基于火电企业在线监测数据、环境统计数据、排污许可及火电排放清单等,分析各统计口径下的海南火电大气污染物排放量差异,并基于在线监测数据分析海南省火电排放时间变化规律.分别设置现状、排污许可及超低排放3种情景,采用CALPUFF模型分析3种情景下火电厂对海南大气环境的影响.结果显示,不同统计口径下火电厂各污染物排放量差异较大,最大差值可达到5.65倍;在时间维度上,海南省火电行业污染物排放量月际分布较平稳,每月污染物排放量约占全年的7%~10%,24h变化呈现明显“两峰两谷”特征.在大气环境影响方面,火电企业大气SO2、NOx、PM2.5、PM10浓度分布总体呈现西部高东部低的趋势.现状情景下火电企业对各城市年均浓度影响范围为SO2 0.001~0.015μg/m3、NOx 0~0.01μg/m3、PM10 0.001~0.006μg/m3、PM2.5 0~0.003μg/m3,最高浓度基本出现在东方市、临高县.火电厂对大气环境的影响程度为许可情景>现状情景>超低情景,执行排污许可时火电厂排放PM10和NOx对各城市均值年均浓度较现状情景分别增加50%和38%;全面实施超低排放后,火电厂对大气环境影响有明显改善,SO2和PM2.5对各城市均值年均浓度较现状情景分别降低57%和69%.  相似文献   

12.
京津冀大气污染传输通道城市燃煤大气污染减排潜力   总被引:1,自引:0,他引:1  
以京津冀大气污染传输通道城市为研究对象,建立了燃煤电厂、燃煤锅炉、农村散煤三大污染源主要大气污染物排放计算方法,以2015年为基准年,梳理现有燃煤污染减排政策措施,对2017年“2+26”城市燃煤污染源SO2、NOx、PM、PM10、PM2.5的减排潜力进行了分析.结果表明:实施燃煤电厂超低排放改造、燃煤锅炉淘汰或改造、散煤改电(气)等措施后,“2+26”城市2017年燃煤SO2、NOx、PM、PM10、PM2.5排放量分别达到87×104t、56×104t、64×104t、45×104t、32×104t,预计比2015年分别减少44%、48%、33%、32%、30%.燃煤电厂、燃煤锅炉、农村散煤替代各项污染物减排比例分别在55%~70%、31%~38%、18%~21%,未来农村散煤治理的减排潜力还较大.从各城市情况来看,多数城市燃煤SO2、NOx减排主要来自燃煤电厂超低排放改造;保定、廊坊等城市燃煤颗粒物减排量较大,得益于散煤治理工作的大力推进.  相似文献   

13.
京津冀及周边地区水泥工业大气污染控制分析   总被引:1,自引:0,他引:1  
以京津冀及周边地区水泥工业为研究对象,基于产排污系数法,建立了水泥工业主要大气污染物排放计算方法,对2016年该地区水泥工业主要大气污染物排放控制水平进行了分析.结果表明:京津冀及周边地区2016年水泥工业SO2、NOx、PM(有组织)排放量分别达到3.2×104t、23.9×104t、9.7×104t,较2015年分别减少24.1%、18.2%、27.2%,各项污染物大幅下降.水泥工业PM无组织排放量占PM总排放量的45.4%,仍需要采取集中收集的方式加强治理.山东、河南是水泥工业SO2、NOx、PM、PM10、PM2.5重点排放来源,应通过化解过剩产能降低污染排放.从各工艺来看,新型干法工艺应考虑采用高效脱氮脱硫技术、协同处置技术、高效大型袋式除尘技术等新技术,进一步降低各项污染物的排放量;粉磨站也需进一步提高污染治理水平.  相似文献   

14.
邯郸市大气污染源排放清单建立及总量校验   总被引:1,自引:0,他引:1       下载免费PDF全文
邯郸作为"2+26"城市主要的重工业城市之一,位于京津冀南北传输通道的核心位置,在京津冀地区大气污染协同调控中处于重要地位.为改善当地空气质量,以邯郸市为研究对象,基于拉网式调查获取详细活动水平数据,结合相关排放因子,得到2016年邯郸市大气污染源排放清单;采用WRF-CMAQ(气象-空气质量)数值模型,模拟了2016年典型季节代表月(1月、4月、7月、10月)的空气质量,验证了数值模型的准确性;最后基于总量校验方法,反向估算了邯郸市典型污染物的排放总量,对初始大气污染源排放清单进行校验.结果表明:①2016年邯郸市SO2、NOx、TSP、PM10、PM2.5、CO、VOCs、NH3的总排放量分别为78 533、183 126、497 466、258 940、124 637、3 735 355、200 309、187 299 t.②工业源是SO2、NOx、PM2.5、CO和VOCs的主要排放源,分别占总排放量的74.5%、54.5%、30.6%、76.7%和28.1%;无组织扬尘源对TSP、PM10、PM2.5的贡献较大,分别占总排放量的58.5%、43.6%、30.3%;NH3的主要排放源为农畜氨及人体和其他氨,二者排放的NH3占总排放量的96.9%.③总量模型估算得到邯郸市PM2.5、SO2、NO2年排放量分别为152 739、79 405、206 549 t;对比分析校验前、后典型污染物排放发现,校验前的大气污染源排放清单可能低估了PM2.5和NOx的排放量.研究显示,邯郸市污染物排放量较大,工业源为主要排放源,建议相关部门加强对工业源的管控力度.   相似文献   

15.
京津冀地区散烧煤与电采暖大气污染物排放评估   总被引:1,自引:0,他引:1       下载免费PDF全文
徐钢  王春兰  许诚  白璞 《环境科学研究》2016,29(12):1735-1742
散烧煤供暖是一种污染物排放量大、一次能源利用效率低的供暖方式,亟需寻找一种新的供暖方式替代散烧煤供暖.在对比评估散烧煤与电煤各种主要污染物排放量的基础上,提出直接电采暖和低温空气源热泵两种替代散烧煤供暖方案,以缓解京津冀地区大气污染,并对改造前后的污染物排放量和技术经济性进行分析;从区域污染物综合减排的战略角度提出对京津冀地区原散烧煤采暖用户进行低温空气源热泵供暖改造和燃煤电厂执行“超净排放”改造两种方案,并对两种方案的污染物减排效果进行了对比.结果表明:单位散烧煤的污染物排放量远高于电煤,其中散烧煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为17.12、2.80、6.37和9.80 g/kg,电煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为0.43、0.85、0.17和0.47 g/kg,散烧煤对综合PM2.5的贡献是电煤的20.9倍;直接电采暖和低温空气源热泵供暖均能有效减少污染物排放量,其中直接电采暖可使每户每年采暖期的SO2、NOx、烟尘和综合PM2.5分别减排66.38、7.15、24.79和36.96 kg,而采用低温空气源热泵的减排量分别为67.79、9.97、25.35和38.52 kg,但直接电采暖方式的一次能源利用效率(仅为33.7%)极低,因此不适合大面积推广;京津冀地区原散烧煤采暖用户在进行低温空气源热泵供暖改造后,其SO2、NOx、烟尘和综合PM2.5年减排量分别为24.47×104、3.60×104、9.15×104和13.91×104 t,燃煤电厂执行“超净排放”改造后相应年减排量分别为1.28×104、4.25×104、1.30×104和2.31×104 t,其中低温空气源热泵供暖改造后的综合PM2.5减排量达到燃煤电厂改造的6.0倍,并且年投资也较燃煤电厂改造低约4×108元.研究显示,采用低温空气源热泵供暖在污染物减排量、技术经济性和实施可行性等方面均具有优势.   相似文献   

16.
采用实测法与排放因子/排污系数法相结合,建立了山西省某市2018年焦化行业分工序大气污染物精细化排放清单. 通过实测法计算焦炉和地面除尘站有组织大气污染物本地化排放因子/排污系数,并考察了其与炉型、产能和炭化室高度的相关性. 结果表明:①2018年山西省某市焦化行业SO2、NOx、PM2.5、PM10排放量分别为2 779.7、9 092.5、3 357.2和5 687.6 t;炭化室高度为4.3 m的捣固机焦炉企业产能与污染排放量均最大. ②实测机焦炉SO2、NOx、颗粒物平均排放因子/排污系数分别为0.069 5、0.624 4、0.024 7 kg/t,地面除尘站颗粒物平均排放因子/排污系数为0.016 8 kg/t,热回收焦炉SO2、NOx、颗粒物平均排放因子/排污系数分别为0.186 6、0.642 4、0.045 6 kg/t. ③实测焦炉SO2、颗粒物排放因子/排污系数均与炭化室高度呈显著负相关. 研究表明,2018年山西省某市焦化行业产能结构相对落后,因原料、炉型和控制技术等差异,相同产能的不同企业间大气污染物排放量差异较大;机焦炉颗粒物、NOx以及热回收焦炉NOx的排放均高于全国平均水平,而其SO2排放偏低.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号