首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
张红玉,张玉冬,顾军,李国学,袁京   总被引:1,自引:0,他引:1  
《中国环境科学》2015,35(11):3379-3386
为了降低厨余垃圾堆肥过程中H2S和NH3这2种恶臭物质的排放,通过向堆肥原料中添加玉米秸秆、木本泥炭和木屑3种调理剂,同时以厨余垃圾单独堆肥作为对照,研究调理剂添加对H2S和NH3排放的影响.结果表明,3种调理剂的添加均促进了有机物的降解和堆体的快速升温,与对照相比,使堆肥进入高温期的时间提前了3~4d;从电导率和发芽率指数来看,添加玉米秸秆处理的堆肥产品达到完全腐熟的要求,而添加木本泥炭和木屑处理的堆肥产品只是达到了无害化的要求;3种调理剂的添加均不同程度减少了厨余垃圾堆肥中H2S和NH3的排放,与对照相比,添加玉米秸秆、木本泥炭和木屑使厨余垃圾堆肥中H2S的累积排放量分别降低了78.7%,50.3%和89.8%,NH3的累积排放量分别降低了53.8%、87.7%和63.9%,可见木屑更能有效控制H2S的排放,而木本泥炭更能有效控制NH3的排放.  相似文献   

2.
李锦华 《环境》2010,(11):24-27
你是否已经厌倦了广州街头拥堵的汽车长龙?你是否为每天呼入汽车尾气而惴惴不安?你是否为时常听到轰轰的汽车噪音而烦躁?每想至此,你是否很向往曾经的一种比较畅顺、无废气、噪音小的公共交通工具——人力车呢?在十九世纪末至二十世纪初的中国,人力车可谓曾风靡一时!  相似文献   

3.
自从1973年第一次全国环境保护会议之后,迄今已经十年.十年来,我国的环境保护工作,取得了很大成就.但是,在我们回顾与展望这一工作时,应该看到,环境保护领域同其他经济和社会生活的各个领域一样,长期受到"左"倾错误的影响,远远没有彻底清除.  相似文献   

4.
情是心灵的密码,爱是教育的基础。教师的情感对学生有直接的感染作用。很难想象,一个没有真情实感、只是把教师这个职业当成谋生工具的教师,能真正引起学生内心深处的共鸣。没有爱就没有教育,这已经成为教育工作者的共识。本文拟就结合班主任工作实践中的真实案例,包括播放教育视频、撰写真情文章、学生感恩回馈等,来探讨紧张充实的高三生活中并不麻木的真情。  相似文献   

5.
编者按 主要污染物减排,是党中央、国务院统筹经济社会健康发展和保护环境的紧迫需要提出的重要任务,是贯彻落实科学发展观的具体行动,是实现可持续发展,建设资源节约型和环境友好型社会,最终实现建设社会主义和谐社会的重要保障.  相似文献   

6.
从食品中微量元素分析测定研究入手,论述了某些食品中微量元素的Se,Ge,Co,Mo,V,Cr的存在情况,并论述了这些微量元素与人体健康的关系。  相似文献   

7.
随着我国社会主义建设事业的迅猛发展,工农业和城市建设对水的需要量越来越大,对水质的要求也越来越高。如何保护水资源,合理用水,节约用水,使我国丰富的水资源有计划地为我国日益发展的工农业和城市建设服务,是我国社会主义建设进程中必须妥善解决  相似文献   

8.
9.
渤海江豚组织中钠,钙,锶,镁,磷,钾的研究   总被引:3,自引:0,他引:3  
1990年,作者于辽东湾采集了10头江豚标本,分别测定了其骨骼、皮肤、肌肉、肝脏、肺、肾、心、胃、肠、胰、脾、肾上腺及生殖腺等13种组织中Ca、Sr、Mg、P、K、Na6种元素的含量,详细分析了骨骼及其他各组织中的Ca/Mg值、Ca/K值、Ca/P值、Ca/Na值和Ca/Sr×100值。结果表明,Ca、Sr、Mg、P,K在骨骼中累积率最高,钾在肌肉中具有高累积,Sr、Ca在肌肉中累积率最低;Mg累积率最低的组织是生殖腺,P累积率最低的组织是肠,而K在骨骼中,Na在肌肉中的累积率均高于其他组织。分析结果还显示,Ca/Mg值最高的是骨骼,最低为肌肉,Ca/P值最高的是骨骼,最低的是肌肉和胰脏,Ca/K值最高为骨骼,最低为脾Ca/Sr×100值最高为肺、最低为肠,而K/Na值最高为肌肉,最低为骨骼,在骨中Ca/P值大约为1,类同于猫和人类。  相似文献   

10.
基于共沉淀的富集作用,采用自制的离心管离心沉淀,以手持式X-射线荧光仪(XRF)测定,由此建立了表层海水中Fe,Ni,Mn,Cu,Zn,Pb的共沉淀-离心-XRF快速分析方法。测定时间为5 min/样;线性范围125μg/L~1 000μg/L,可以满足近岸表层海水中铁和锰的分析要求;基底加标200μg/L回收率为94.5%~116%;连续7次测定6种金属浓度均为500μg/L的海水加标样品,相对标准偏差(RSD)为2.86%~5.85%。与ICP-MS法比较,测定结果无显著性差异。本方法具有化学试剂污染小、方便快捷、可现场快速测定方法等优点。该方法已成功应用于厦门西港和福建九龙江河口表层海水中可溶态铁锰的现场测定,并在现场以手持式XRF对颗粒物中铁锰进行了测定,获得了该海域颗粒物中和海水中铁锰的分布。  相似文献   

11.
Thiosemicarbazide-grafted multi-walled carbon nanotubes were prepared and employed to investigate the pre-concentration of Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) from aqueous solution prior to their determination by ICP-OES. The resulting material was characterized by FT-IR, TGA and SEM. Various factors influencing the separation and pre-concentration were investigated. The enrichment factor typically is 60. Under optimized experimental conditions, the maximum adsorption capacities of Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) were found to be 1.98, 10.94, 3.69 mg/g, and the relative standard deviations are 〈 3.5% (n = 6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) in water samples.  相似文献   

12.
采用微波辅助磷酸活化制备了高中孔率蔗渣基介孔炭,并通过硝酸氧化和乙二胺聚合在其孔道内修饰了含氮多胺基团,探索了溶液浓度、温度、吸附剂剂量等对改性介孔炭的Pb(II)吸附性能、行为和热力学特性的影响.结果表明,蔗渣基介孔炭较宽的孔道结构可通过乙二胺缩水聚合反应在其表面接枝酰胺、仲胺等含氮基团;胺化改性增强化了介孔炭对水溶液中Pb(II)的固定作用,改性后介孔炭对Pb(II)的吸附量高达180mg/g,是改性前介孔炭的1.5倍;改性介孔炭对Pb(II)的去除率显著增加,对溶液浓度<60mg/L的Pb(II)去除率接近100%.等温吸附与热力学数据表明,胺化改性介孔炭对Pb(II)的吸附位能量存在差异化,吸附是自发的吸热反应过程,温度对铅(II)离子吸附有促进作用,化学作用在吸附过程中发挥了重要作用.  相似文献   

13.
Bamboo charcoal(BC) was used as starting material to prepare iron-modified bamboo charcoal(Fe-MBC) by its impregnation in FeCl 3 and HNO 3 solutions simultaneously,followed by microwave heating.The material can be used as an adsorbent for Pb(Ⅱ) contaminants removal in water.The composites were prepared with Fe molar concentration of 0.5,1.0 and 2.0 mol/L and characterized by means of N 2 adsorption-desorption isotherms,X-ray diffraction spectroscopy(XRD),scanning electron microscopy coupled with energy dispersive X-ray spectrometry(SEM-EDS),Fourier transform infrared(FT-IR) and point of zero charge(pH pzc) measurements.Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation.The adsorbent with Fe molar concentration of 2 mol/L(2Fe-MBC) exhibited the highest surface area and produced the best pore structure.The Pb(Ⅱ) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(Ⅱ).The adsorption of Pb(Ⅱ) strongly depended on solution pH,with maximum values at pH 5.0.The ionic strength had a significant effect on the adsorption at pH < 6.0.The adsorption isotherms followed the Langmuir isotherm model well,and the maximum adsorption capacity for Pb(Ⅱ) was 200.38 mg/g for 2Fe-MBC.The adsorption processes were well fitted by a pseudo second-order kinetic model.Thermodynamic parameters showed that the adsorption of Pb(Ⅱ) onto Fe-MBC was feasible,spontaneous,and exothermic under the studied conditions,and the ion exchange mechanism played an significant role.These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(Ⅱ) from wastewater.  相似文献   

14.
Introduction Toxic metal compounds are frequently used in industrial processes and are widely distributed in the environment. Due to their extended persistence in biological systems and tendency to bioaccumulate as they move up the food chain, they repres…  相似文献   

15.
The adsorption characteristics of heavy metals: Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently from aqueous solution with selectivity in the order of Pb(Ⅱ)〉Cu(Ⅱ)〉Cd(Ⅱ)〉Zn(Ⅱ). The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium. Tourmaline could also increase pH value of metal solution.The maximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(Ⅱ), Pb(U), Zn(Ⅱ) and Cd(U), respectively. The temperature (25-55℃) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb〉Cu〉Zn 〉Cd and inhibition dominance observed in two metal systems was Pb〉Cu, Pb〉Zn, Pb〉Cd, Cu〉Zn, Cu〉Cd, and Cd〉Zn.  相似文献   

16.
为获得同时具有优良的吸附性能和磁分离特性的生物吸附材料,以汽爆秸秆为基质,采用戊二醛交联剂法制备了磁性聚乙烯亚胺功能化秸秆吸附剂(Fe3O4-PEI-RS),通过SEM、XRD、FTIR、XPS和VSM等手段表征了材料的结构和性质,测定了Pb(Ⅱ)在Fe3O4-PEI-RS上的吸附性能,考察了pH、吸附时间、吸附剂投加量、Pb(Ⅱ)初始浓度、温度等因素对吸附的影响.结果表明,Fe3O4-PEI-RS对Pb(Ⅱ)的吸附具有强烈的pH依赖性;吸附时间对Pb(Ⅱ)的吸附效率有明显的影响,在180 min时吸附达到平衡,吸附过程符合准二级动力学模型;Langmuir和Freundlich模型都能很好地描述Pb(Ⅱ)在Fe3O4-PEI-RS上的吸附行为,20、30和40℃时最大吸附量分别为192.31、200.00和212.77 mg/g;热力学参数△G < 0,而焓变△H>0、△S>0,说明该吸附属于熵增加的自发吸热反应过程,升温有利于吸附.重复试验表明,EDTA作解吸剂,经5次吸附/解吸附循环后吸附剂仍能保持较高的吸附容量.研究显示,所制Fe3O4-PEI-RS对Pb(Ⅱ)具有较高的吸附容量,稳定性好、可循环利用,能在磁场下实现快速分离.   相似文献   

17.
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.  相似文献   

18.
Trimercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of Ag(I) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 min and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(II), Zn(II), Ni(II), Pb(II) and Cr(III) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.  相似文献   

19.
Microporous chitosan (CS) membranes were directly prepared by extraction of poly(ethylene glycol) (PEG) from CS/PEG blend membrane and were examined for iron and manganese ions removal from aqueous solutions. The different variables affecting the adsorption capacity of the membranes such as contact time, pH of the sorption medium, and initial metal ion concentration in the feed solution were investigated on a batch adsorption basis. The affinity of CS/PEG blend membrane to adsorb Fe(II) ions is higher than that of Mn(II) ions, with adsorption equilibrium achieved after 60 min for Fe(II) and Mn(II) ions. By increasing CS/PEG ratio in the blend membrane the adsorption capacity of metal ions increased. Among all parameters, pH has the most significant effect on the adsorption capacity, particularly in the range of 2.9-5.9. The increase in CS/PEG ratio was found to enhance the adsorption capacity of the membranes. The effects of initial concentration of metal ions on the extent of metal ions removal were investigated in detail. The experimental data were better fitted to Freundlich equation than Langmuir. In addition, it was found that the iron and manganese ions adsorbed on the membranes can be effectively desorbed in 0.1 mol/L HCl solution (up to 98% desorption efficiency) and the blend membranes can be reused almost without loss of the adsorption capacity for iron and manganese ions.  相似文献   

20.
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号