首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
以影响我国大陆干湿状况的孟加拉湾和南海两股水汽的疑似交界影响区域之一的云南省、广西壮族自治区为研究区,借助稳定性同位素质谱仪MAT253测定2014年16个点、239个有效样本的雨季大气降水的氢氧稳定同位素组成,完成了基于GIS平台的δD、δ18O空间格局分析,实现了中国夏季风西南水汽和东南水汽的交互区域界定。主要研究结果有三点:(1)2014年雨季及6月中下旬一次降水过程δD和δ18O空间变化格局基本一致,因为夏季风大气降水δD和δ18O均沿水汽输送路径不断衰减;(2)大气降水氢氧稳定同位素空间分布主要受降雨量效应和大陆效应的影响,哀牢山高大地形阻隔及云南高原正地形水汽截留作用可能是其数值发生突变的主要原因;(3)2014年夏季的西南水汽在越过哀牢山后与东南水汽在红河、个旧、蒙自附近交互影响使δD和δ18O发生显著变化,6月中下旬一次降水过程中的氢氧同位素数值在红河、个旧附近达到最低,两者互为验证红河、个旧应该是西南水汽和东南水汽影响区域分界。  相似文献   

2.
水汽源区变化对黄河中游降水稳定同位素的影响   总被引:1,自引:0,他引:1  
郭政昇  郑国璋  赵培  肖杰 《自然资源学报》2018,33(11):1979-1991
利用黄河中游地区9个站点的降水同位素数据,分析其时空分布特征及环境效应,并模拟代表站点的气团运移轨迹,利用OLR技术研究水汽源区变化及输送过程对夏半年降水稳定同位素的影响。结果表明:δ18O有着较为明显的季节性变化规律,春夏较低,秋冬较高;空间分布则呈由东南向西北升高的趋势。大气降水线方程表现出明显的过渡性区位特征,降水量效应较为显著。水汽主要通过西北与东南两个水汽通道输送,东向水汽与青藏高原的热力、动力性质对流域的水源差异产生了较大影响。水汽源区变化与对流层中上部水汽含量场都与稳定同位素特征有着较强的对应关系,8、9月形成于西太平洋的热带辐合带(ITCZ)使东南季风成为夏季黄河中游地区主要的水汽输送通道。  相似文献   

3.
基于LMDZ模型的西南地区水汽来源及水汽再循环率的分析   总被引:1,自引:0,他引:1  
研究基于LMDZ模型对我国西南地区9个站点的同位素数据进行空间插值,利用同位素混合模型对不同来源水汽对降水的贡献率进行时空分析。结果表明,我国西南地区外来水汽对降水的贡献率除部分站点外,均在90%以上;其次为植物蒸腾水汽,占比为0.3%~21.3%,地表蒸发水汽对降水贡献率最小,介于0.1%~8.1%之间,同时外来水汽对降水贡献率夏季大于冬季,而地表蒸发水汽和植物蒸腾水汽对降水的贡献率冬季略大于夏季。水汽再循环率呈现空间差异,四川盆地及周围山地地表蒸发水汽与植物蒸腾水汽略高于青藏高原及云贵高原一带。结合美国国家大气研究中心所提供的气象资料,采用MeteoInfo软件对我国西南地区各站点进行近10年(1998~2007)的后向轨迹追踪,并对其进行聚类分析得出四川省两站点和重庆站点在夏季近源局地蒸发水汽占比高达50%,贵阳夏季有28.95%的水汽为近源局地蒸发形成,其余站点夏季水汽来源大部分来自于阿拉伯海、孟加拉湾和印度洋水汽,还有一部分来自于西风带的水汽和东南季风带来的西太平洋的水汽,然而冬季水汽均来自于西风带水汽。  相似文献   

4.
夏季风水汽输送对云南夏季旱涝的影响   总被引:1,自引:0,他引:1  
利用欧洲中期天气预报中心的1961-2002年逐月再分析资料(ERA-40),计算夏季80°E~130°E, 0°~35°N区域内水汽通量及其散度,并使用EOF分解和小波分析等统计方法,对云南夏季水汽通量及其散度的时空特征进行诊断分析,结果表明:云南夏季风降水有两支水汽来源,最强一支来自越赤道气流转向后在孟加拉湾北上形成西南水汽输送,其水汽源地为印度洋、孟加拉湾,反映南亚季风对云南的影响;另一支为副热带高压南侧的东风气流,其源地是西太平洋、南海,反映东亚季风对云南的影响;云南夏季降水的主要水汽通道是南亚夏季风水汽输送。夏季风水汽通量矢量的第一特征向量分布型大致呈反气旋式水汽输送,对应云南夏季降水的一致偏多;水汽通量矢量场第二特征向量的分布大致为气旋式水汽输送,对应云南夏季降水偏少;第三特征向量为气旋式-反气旋式,造成云南夏季降水南北分布差异,反映云南夏季降水的南北差异。第一模态的水汽通量有很强的年际变化,在年代际变化上13~15 a周期较为显著,在年际变化上2~3 a的周期较显著;1960年以来水汽通量呈减少趋势为-0.105 kg(m·s)-1/a。第二模态的水汽通量呈增加趋势,为0.566 kg(m·s)-1/a,在年代际变化上11~15 a周期最为显著,从1970年代中期后水汽通量呈2~3 a的周期振荡。夏季异常旱涝年与来自孟加拉湾和南海地区的西南水汽输送的强度及位置有关,并且对流层中层的水汽输送起决定因素。  相似文献   

5.
长江源区降水氢氧稳定同位素特征及水汽来源   总被引:6,自引:4,他引:2  
基于长江源区冬克玛底流域2014年5~10月连续采集的73个降水同位素数据,结合相关气象资料,分析了降水中δD、δ~(18)O及氘盈余(d-excess)变化特征,讨论了δ~(18)O与气温、降水量的关系,利用HYSPLIT模型追踪流域降水的水汽来源并估算不同水汽来源对降水量的贡献比例.结果表明:研究区降水中δ~(18)O和δD变化范围分别为-26.5‰~1.9‰和-195.2‰~34.0‰,且δ~(18)O和δD值随时间变化波动较大,与不同来源水汽输送有直接的关系;区域降水线的斜率和截距均大于全球大气降水线,与青藏高原北侧地区的降水线相近;不同降水类型中的δ~(18)O和δD的关系差异显著,主要与水汽来源和形成降水时的气象条件有关;由于受局地蒸发水汽及水汽输送过程影响,流域大气降水d-excess值整体上相对偏大;研究区的降水同位素存在显著的降水量效应,但不存在温度效应,表明降水量对大气降水中稳定同位素含量的控制作用更强;水汽来源轨迹表明,研究区大气降水水汽来源主要有西南季风携带的海洋性水汽、局地蒸发水汽及西风输送水汽,对降水量的贡献比例分别为43%、36%和21%.该研究结果有助于进一步了解长江源头区冬克玛底流域的大气环流特征及水循环过程.  相似文献   

6.
川渝地区夏季降水异常水汽输送差异   总被引:1,自引:0,他引:1  
利用川渝地区1960—2006年34站逐月降水量资料和美国NCEP/NCAR同期逐月风场、比湿场和地面气压场资料,网格距2.5°×2.5°,采用EOF分解、区域降水指数、合成分析等方法,详细讨论了川渝地区夏季降水量多、少雨年水汽通量的纬向、经向、整层输送及水汽通量散度的差异。川渝地区夏季降水量标准化距平EOF分解结果表明把川渝地区夏季降水量作为一个整体来分析是合理的。区域降水量指数能很好地揭示出川渝地区夏季降水量的多寡。合成分析表明川渝地区夏季降水量多、少雨年水汽输送通量的纬向、经向、整层输送及水汽通量散度存在着明显差异,多雨年孟加拉湾、南海、西太平洋的水汽输送通量显著增强,水汽输送通量辐合比少雨年显著增强,为川渝地区夏季降水提供了丰沛的水汽条件,有利于川渝地区夏季降水量的异常偏多;少雨年则反之。  相似文献   

7.
祁连山东段降水的水化学特征及离子来源研究   总被引:6,自引:4,他引:2  
贾文雄  李宗省 《环境科学》2016,37(9):3322-3332
我国西北地区深处内陆,水汽经过长距离输送才可以到达,降水量少且变率大,与季风区降水有很大不同.运用因子分析法、富集因子法、后向轨迹分析法,对2013-05-01~2014-07-11连续收集的降水主要离子进行分析,研究了祁连山东段降水的水化学特征及离子来源.结果表明,祁连山东段降水电导率值的变化范围在29.20~892.00μS·cm-1之间,p H值在7.02~8.89之间,降水电导率受碱性元素控制,为弱碱性水;降水中阳离子浓度大小排序为Ca~(2+)Mg~(2+)Na~+NH_4~+K~+,阴离子浓度大小排序为SO_4~(2-)Cl-NO_3~-,降水为SO_4~(2-)-Ca~(2+)型;降水中K~+、Mg~(2+)、Ca~(2+)、NH+4、Cl-、NO_3~-、SO_4~(2-)浓度在秋季最高,Na+浓度在冬季最高;降水中的Na+和Cl-主要是海源贡献,但Na+在冬季也有陆源贡献,Cl~-在秋季有人为源的影响,K+、Mg~(2+)、Ca~(2+)主要是陆源贡献,Mg~(2+)在冬季有人为源的影响,NO_3~-和SO_4~(2-)主要是人为源的贡献;降水中离子来源的水汽输送有西北、北方、北方+东南、西北+东南、西北+西南、西北+北方+东南路径,其中西北路径是最主要来源.祁连山降水中海源离子通过西风环流和季风环流长距离输送,陆源离子主要由中亚、新疆、蒙古高原的沙漠和戈壁提供,人为源离子主要与各路径上的城市污染和绿洲工、农业生产有关,而降水中离子含量多少受各天气系统的强弱变化影响.  相似文献   

8.
张弛  吴绍洪 《自然资源学报》2021,36(5):1186-1194
西南地区地形复杂,极端降水极易形成山洪并引发地质灾害,1998年夏季西南降水达709.3 mm,超出平均降水约23.9%。经使用水汽追踪模型WAM2layers和ERA-Interim再分析资料等大数据追踪西南降水水汽来源,发现西南夏季降水主要有四个源区,分别是西南季风区、西风带区、本地和东南季风区,1998年夏季分别贡献了330.1 mm、110.0 mm、104.8 mm和65.6 mm水汽,约占所追踪降水的52.2%、17.4%、16.6%和10.4%。西南季风区作为最大源区,贡献了超过一半的降水水汽。增加的降水其水汽主要来自西南季风区、西风带区和本地,比平均分别多贡献80.1 mm、29.3 mm和27.1 mm,合占所增加降水的99.9%;其中又以西南季风区贡献占主导。进一步发现,1998年夏季太平洋副高向西南延伸,并在北孟加拉湾和我国南海形成两个高压中心异常,导致西南季风向我国西南地区的水汽输送异常强劲,从而造成西南地区降水异常增多。  相似文献   

9.
综合考虑高原大地形以及南亚季风、中纬西风带的影响,利用1979-2010 年NCEP/NCAR再分析资料,从高原整体空中水资源分布以及区域可降水量与水汽收支变化等方面剖析了青藏高原夏季(6-8 月)空中水资源时空变化特征及其机制。分析表明:除高原西北部外,其它4 个分区多年平均水汽净收支为汇。1979-2010 年,高原中南、东南与西北部可降水量与水汽净收支均呈递减趋势,东北部相反,中北部水汽净输入减弱但可降水量增加。高原空中水资源变化与中纬西风带和南亚季风水汽输送关联密切,区域西风、南亚季风活动减弱分别反映了高原中东部纬向水汽、30°N以南经向水汽输送的减少;而高原特有的地形分布加剧了各分区水汽净收支变化格局。  相似文献   

10.
粤西云浮市大气降水δ~(18)O与水汽来源的关系   总被引:3,自引:1,他引:2  
2005-04-05~2006-04-01期间在粤西云浮市采集了59次具有显著天气过程的大气降水样品, 并进行了稳定氧同位素测试, 结果显示此期间云浮市大气降水中δ18O值波动于-12.47‰~-0.18‰之间, 平均值为-4.91‰; 夏秋季(5~9月)的δ18O值相对偏低, 多数在-10.00‰~-5.00‰, 平均-6.30‰; 冬春季(11月~次年4月)的δ18O值相对偏高, 多数在-3.00‰~-1.00‰, 平均-2.20‰. 这些δ18O值与它们相应的气温、水汽压(e)呈较为显著负相关, 相关系数(R)均达-0.60, 而与降水量的负相关性较差, 相关系数(R)为-0.33. 与大致同时期的广州降水中δ18O月平均值相比, 云浮降水中δ18O呈相对低值, 可能与云浮市受到了较强的西南季风叠加影响有关. 后推气流轨迹的结果表明, 这些大气降水δ18O值在前汛期(4~6月)、后汛期(7~9月)和非汛期(10月~次年4月)中的变化很大程度上受不同水汽来源决定, 表明降水δ18O值在一定程度上具有指示水汽来源的作用: δ18O值偏高的大气降水其水汽可能主要来源于西太平洋的副热带海区(包括我国南海海域)的变性热带太平洋暖气团; 而δ18O值偏低的大气降水其水汽则来源于印度洋和孟加拉湾的变性热带海洋气团.  相似文献   

11.
我国东北地区大气降水稳定同位素特征及其水汽来源   总被引:14,自引:5,他引:9  
依据全球大气降水同位素观测网络(GNIP)中我国东北地区的月大气降水氢氧稳定同位素资料,并结合相关气象资料,分析了该地区大气降水稳定同位素时空分布特征及其影响因子,并建立了局地大气水线方程.结果表明,东北地区大气降水中δ18O值总体上较低,在时间变化上,表现为冬低夏高;从空间分布来看,由南至北加权平均δ18O值呈减小趋势;降水δ18O与温度线性关系显著,而与降水量则不存在线性关系,利用降水δ18O与温度、降水量、高程、经度和纬度等气候因子建立的多元线性回归关系可以对降水δ18O进行定量估算;采用HYSPLIT 4.9模型对GNIP观测点水汽来源进行追踪,气团聚类轨迹表明,该区全年有两条水汽路径,分别为西风带输送的大西洋、极地北冰洋冷湿水汽和太平洋暖湿水汽.  相似文献   

12.
秦岭是我国重要的“中央水塔”,是南水北调的重要水源地。基于InVEST模型评估2000—2018年秦岭地区产水服务,分析其时空演变特征,利用相关性分析和地理加权回归方法(GWR)探究不同因素对秦岭地区产水服务变化的影响。结果表明:秦岭地区多年平均产水量为235.16 mm,19年间产水量呈现微弱下降趋势,产水量在空间上表现为由南部向北减少的特点。秦岭地区产水量波动程度和变化趋势都较弱,产水服务整体比较稳定。各因素对产水量的影响具有明显的空间异质性,降水主导的范围最大(33.18%),且集中分布于产水量较多的秦岭南侧。其次为NPP(17.90%)和实际蒸散量(16.71%),两者在中北部地区是主要影响因素。研究结果对促进区域生态安全和可持续发展具有一定的指导意义。  相似文献   

13.
利用1948—2008年的NCEP/NCAR逐月再分析资料,计算了四川地区大气中的可降水量、水汽含量相对变率、水汽输送通量和水汽输送通量散度,分析了四川空中水资源的稳定性与可开发性。结果表明:水汽含量的稳定性特征与水汽含量有密切关系,水汽含量高的东南部,水汽含量稳定;水汽含量相对低的西北地区,水汽含量不稳定。盆地月水汽含量的平均年际变化特点为:夏季小、冬季大,东部小、西部大,1948—2008年以来,区域平均的年大气可降水量总体呈偏多—偏少—偏多—偏少的趋势。大部分水汽集中在对流层中下层,主要来自印度季风区孟加拉湾和南海,而对流层中上层,则以中纬度西风带输送为主。春、秋、冬季四川东南地区有较强的水汽辐合中心,结合大气环流和大气湿度分布揭示了区域上空水汽汇聚,可以较好地指导云雨作业。  相似文献   

14.
利用NCEP/NCAR逐日再分析资料对黑河流域的水汽输送和收支特征进行了计算分析,结果表明:西风环流使得源于大西洋和北冰洋的水汽成为黑河流域空中水汽的主要来源,流域内水汽输送以自西向东的纬向输送为主,东边界输出强度强于西边界输入强度,纬向净输入量为负;经向输送为自北向南且在强度上不及纬向输送,北边界输入强度强于南边界输出强度,经向净输入量为正。700 hPa气层流域南部的水汽辐合辐散特征随季节变化显著,冬季为水汽辐散区,夏季为水汽辐合区;流域北部没有明显的水汽辐合辐散特征。全流域多年平均水汽输入量为997.3 km3,输出量为1 046.1 km3,净输入量-48.8 km3,20世纪60年代中期以后流域水汽净输入量呈现增加趋势。黑河流域北部荒漠区年内各季均为水汽输出期,中低层大气(地面~500 hPa)为主要的水汽输出层;南部山区年内6-9月为水汽输入期,低层大气(地面~700 hPa)为水汽输入层,中高层大气(700~300 hPa)为水汽输出层。据大气水平衡原理,黑河流域多年平均蒸发量约为84 km3。  相似文献   

15.
1980—2009年三峡库区空中水资源变化特征   总被引:6,自引:5,他引:1  
利用1980—2009年三峡库区及周边15个气象探空站的高空资料,分析了三峡库区空中水资源的变化特征,结果表明:三峡库区上空整层水汽含量分布从东北到西南逐渐增加。三峡库区的水汽主要来自西南水汽输送,夏季西南风水汽输送强度最大。三峡库区上空水汽多以辐合为主,尤其在库区西北部和东南部的辐合特征更为明显。三峡库区的水汽主要从南边界流入,而主要从东边界流出。三峡库区各月的净水汽通量都为正值,呈单峰型变化,在7月达到最大值。近30 a,三峡库区净水汽通量经历了明显的先上升后下降的抛物线型年代际变化,春季和冬季的平均净水汽通量整体呈减少趋势,而夏季、 秋季和年平均的净水汽通量呈增加趋势。  相似文献   

16.
2015/2016年海洋和大气环流异常对中国夏季降水的影响   总被引:1,自引:1,他引:0  
肖莺  任永建  杜良敏 《自然资源学报》2016,31(12):1995-2004
利用1981年1月-2016年8月中国160个气象站降水量资料和NCEP/NCAR资料,对比分析了2015/2016年的主要海洋和大气环流异常及其对夏季降水的影响。结果表明:1)2015和2016年夏季降水异常分布有着明显的差异。2015年夏季降水呈南多北少特点;2016年夏季降水明显增多,尤其是北方地区,且呈现经向型分布。2)热带印度洋-太平洋海温状况监测显示,2015年海温异常表现为El Niño发展年、热带印度洋全区一致模态海温偏暖、印度洋偶极子正位相;2016年海温异常表现为El Niño结束年、热带印度洋全区一致模态海温偏暖、印度洋偶极子负位相。3)2015年,受热带印度洋-太平洋海温异常影响,使得夏季西太平洋副高偏强、偏南,再配合中高纬冷空气活跃,西风急流轴位置偏南,导致我国降水北少南多。4)2016年,受El Niño衰减、印度洋偶极子负位相影响,副高偏北;叠加印度洋海温偏暖的“充电器”效应,副高偏强;同时冷空气偏北偏弱,西风急流轴位置偏北,导致长江中下游及以北区域降水偏多。  相似文献   

17.
基于横断山区27 个气象台站1961-2012 年的实测数据,应用Penman-Monteith 模型、气候倾向率空间插值、交叉小波和相干小波变换等方法分析横断山区季风期水分盈亏量的时空变化趋势及其与若干气候指数之间的相互关系。结果表明:近52 a 来,横断山区季风期水分盈亏量在波动中呈增加趋势,其增加速率为5.87 mm/10 a;且在整个时段内,横断山区季风期水分盈亏量均呈盈余状态。该区季风期水分盈亏量空间差异也较为明显,水分盈亏量从南到北逐渐降低,但其增加趋势却从南到北逐渐增大。季风期水分盈亏量与海拔呈现负相关,即水分盈亏量随着海拔的升高而降低;在海拔相对较低的区域,水分盈亏量较高;反之,水分盈亏量较低。此外,该区域季风期水分盈亏量与北极涛动(AO)、太平洋年代际振荡(PDO)和厄尔尼诺-南方涛动(ENSO)气候指数等存在多尺度的显著相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号