首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The catalytic activity of Pd catalysts supported on Ce0.73Tb0.27 O x/Si O2, Ce0.6Zr0.4O x/Si O2,Ce0.73Tb0.27 O x/La2O3–Al2O3and Ce0.6Zr0.4O x/La2O3–Al2O3was studied using the reduction of NO by CO. The catalysts were characterized by X-ray fluorescence, surface area, X-ray diffraction, temperature-programmed reduction, CO chemisorption and oxygen storage capacity. Temperature-programmed reduction results indicated that Tb or Zr incorporation improves the reducibility and oxygen storage capacity. CO chemisorption data suggested the presence of large Pd O particles due to the low CO/Pd ratio. No significant differences were obtained in light off temperatures(T Light off) for all Pd catalysts and the most active was1.5%Pd/Ce0.6Zr0.4O x/Si O2.  相似文献   

2.
Mg–Al–Cl layered double hydroxide (Cl-LDH) was prepared to simultaneously remove Cu(II) and Cr(VI) from aqueous solution. The coexisting Cu(II) (20 mg/L) and Cr(VI) (40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(II) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(II) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(II) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(II) (200 mg/L) and Cr(VI) (400 mg/L). The affecting factors (such as solution initial pH, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of pH values and the concentrations of Mg2+ and Al3+ in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl in Cl-LDH interlayer, isomorphic substitution of Mg2+ with Cu2+, formation of Cu2Cl(OH)3 precipitation, and the adsorption of Cr(VI) by Cu2Cl(OH)3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

3.
Mg–Al–Cl layered double hydroxide(Cl-LDH) was prepared to simultaneously remove Cu(Ⅱ)and Cr(VI) from aqueous solution. The coexisting Cu(Ⅱ)(20 mg/L) and Cr(VI)(40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(Ⅱ) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(Ⅱ) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(Ⅱ) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(Ⅱ)(200 mg/L) and Cr(VI)(400 mg/L). The affecting factors(such as solution initial p H, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of p H values and the concentrations of Mg~(2+) and Al~(2+)in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl-in Cl-LDH interlayer, isomorphic substitution of Mg~(2+) with Cu~(2+), formation of Cu_2Cl(OH)_3precipitation, and the adsorption of Cr(VI) by Cu_2Cl(OH)_3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

4.
Biosensors for sensitive and specific detection of foodborne and waterborne pathogens are particularly valued for their portability, usability, relatively low cost, and real-time or near real-time response. Their application is widespread in several domains, including environmental monitoring. The main limitation of currently developed biosensors is a lack of sensitivity and specificity in complex matrices. Due to increased interest in biosensor development, we conducted a systematic review, com...  相似文献   

5.
6.
Aluminum–lithium (Al–Li) alloys are very attractive for potential aerospace applications due to their lower density, higher specific strength and rigidity, better corrosion and fatigue crack growth resistance properties, compared to conventional aluminum alloys. Laser beam welding (LBW), being an advanced joining method, has already been approved for applications involving aluminum alloys. However, there are still a number of problems and issues to be answered and solved in LBW of Al–Li alloys. In this review, the properties of Al–Li alloys and the characteristics of LBW are introduced, the formation and prevention of the main weld defects such as porosity and hot cracking are discussed, and then the weld microstructure and the joint mechanical properties are described in highlight. At the end, an outlook on future trends is presented.  相似文献   

7.
This paper presents a cost–benefit analysis of the 1990 Clean Air Act Amendments (CAAA) requiring the addition of oxygen content in gasoline, using California as a case study. The valuation and comparison of costs and benefits for several fuel blends (with and without oxygen content) provides a framework to investigate cross-media (air, water, soil) tradeoffs. We use known valuation methods such as the travel cost method to derive recreational value, the averting expenditures approach and cost of illness approach to derive public health costs, and market price method to quantify increases in fuel price and fuel efficiency costs in order to compare the alternatives. We use data from California to evaluate the current fuel blend with methyl tert-butyl ether (MTBE), a fuel blend with ethanol (ethyl alcohol), and a fuel blend without oxygenated compounds. The most expensive option to meet the 1990 CAAA is the current reformulated gasoline blend with MTBE, which results in a net cost to California's economy of between $0.9 and 2.7 billion dollars annually. The cost of treating groundwater contaminated with MTBE is a major cost factor. Our assessment indicates that the non-oxygenated gasoline formulation is the most cost-effective, particularly in the long-term, once refiners are able to implement modifications to their installations or negotiate long-term supply contracts for these additives. Several strategies are identified to transition out of using the current gasoline blend with MTBE.  相似文献   

8.
Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant–plant–herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7 %, 35.7 % and 21.7 % higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant–plant mutualism.  相似文献   

9.
Governments are promoting biofuels and the resulting changes in land use and crop reallocation to biofuels production have raised concerns about impacts on environment and food security. The promotion of biofuels has also been questioned based on suggested marginal contribution to greenhouse gas emissions reduction, partly due to induced land use change causing greenhouse gas emissions. This study reports how the expansion of sugarcane in Brazil during 1996–2006 affected indicators for environment, land use and economy. The results indicate that sugarcane expansion did not in general contribute to direct deforestation in the traditional agricultural region where most of the expansion took place. The amount of forests on farmland in this area is below the minimum stated in law and the situation did not change over the studied period. Sugarcane expansion resulted in a significant reduction of pastures and cattle heads and higher economic growth than in neighboring areas. It could not be established to what extent the discontinuation of cattle production induced expansion of pastures in other areas, possibly leading to indirect deforestation. However, the results indicate that a possible migration of the cattle production reached further than the neighboring of expansion regions. Occurring at much smaller rates, expansion of sugarcane in regions such as the Amazon and the Northeast region was related to direct deforestation and competition with food crops, and appear not to have induced economic growth. These regions are not expected to experience substantial increases of sugarcane in the near future, but mitigating measures are warranted.  相似文献   

10.
Within the initiatives for poliomyelitis eradication by WHO, Italy activated an environmental surveillance (ES) in 2005. ES complements clinical Acute Flaccid Paralysis (AFP) surveillance for possible polio cases, detects poliovirus circulation in environmental sewage, and is used to monitor transmission in communities. In addition to polioviruses, the analyses comprised: (i) the monitoring of the presence of non-polio enteroviruses in sewage samples and (ii) the temporal and geographical distribution of the detected viruses. From 2009 to 2015, 2880 sewage samples were collected from eight cities participating in the surveillance. Overall, 1479 samples resulted positive for enteroviruses. No wild-type polioviruses were found, although four Sabin-like polioviruses were detected. The low degree of mutation found in the genomes of these four isolates suggests that these viruses have had a limited circulation in the population. All non-polio enteroviruses belonged to species B and the most frequent serotype was CV-B5, followed by CV-B4, E-11, E-6, E-7, CV-B3, and CV-B2. Variations in the frequency of different serotypes were also observed in different seasons and/or Italian areas. Environmental surveillance in Italy, as part of the ‘WHO global polio eradication program’, is a powerful tool to augment the polio surveillance and to investigate the silent circulation or the re-emergence of enteroviruses in the population.  相似文献   

11.
Beijing–Tianjin–Hebei(BTH) and its surrounding areas are very important to air pollution control in China.To analyze the characteristics of BTH and its surrounding areas of China,we collected 5,641,440 air quality data from 161 air monitoring stations and 37,123,000 continuous monitoring data from air polluting enterprises in BTH and surrounding cities to establish an indicator system for urban air quality portraits.The results showed that particulate matter with aerodynamic diameters of 2.5 μm(PM_(2.5)),particulate matter with aerodynamic diameters of 10 μm(PM_(10)) and SO_2 improved significantly in 31 cities from2015 to 2018,but ozone deteriorated.Air quality in BTH and the surrounding areas showed obvious seasonal characteristics,among which PM_(2.5),PM_(10),SO_2,and NO_2 showed a "U" type distribution from January to December,while O_3 had an "inverted U" distribution.The hourly changes in air quality revealed that peaks of PM_(2.5),PM_(10) and NO_2 appeared from 8:00 to 10:00,while those for O_3 appeared at 15:00–16:00.The exposure characteristics of the 31 cities showed that six districts in Beijing had the highest air quality population exposure,and that exposure levels in Zhengzhou,Puyang,Anyang,Jincheng were higher than the average of the 31 investigated cities.Additionally,multiple linear regression revealed a negative correlation between meteorological factors(especially wind and precipitation) and air quality,while a positive correlation existed between industrial pollution emissions and air quality in most of BTH and its surrounding cities.  相似文献   

12.
Disinfection byproduct(DBP)precursors in wastewater during the reversed anaerobic–anoxic–oxic(A~2/O)process,as well as their molecular weight(MW)and polarity-based fractions,were characterized with UV scanning,fluorescence excitation emission matrix,Fourier transform infrared and nuclear magnetic resonance spectroscopy.Their DBP formation potentials(DBPFPs)after chlorination were further tested.Results indicated that the reversed A~2/O process could not only effectively remove the dissolved organic carbon(DOC)and dissolved total nitrogen in the wastewater,but also affect the MW distribution and hydrophilic–hydrophobic properties of dissolved organic matter(DOM).The accumulation of low MW and hydrophobic(HPO)DOM was possibly due to the formation of soluble microbial product-like(SMP-like)matters in the reversed A~2/O treatment,especially in the anoxic and aerobic processes.Moreover,DOM in the wastewater displayed a high carbonaceous disinfection byproduct formation potential(C-DBPFP)in the fractions of MW100 k Da and MW5 k Da,and revealed an increasing tendency of nitrogenous disinfection byproduct formation potential(N-DBPFP)with decrease of MW.For polarity-based fractions,the HPO fraction of wastewater showed significantly higher C-DBPFP and N-DBPFP than hydrophilic and transphilic fractions.Therefore,although the reversed A~2/O process could remove most DBP precursors by DOC reduction,it led to the enhancement of DBPFP with the formation and accumulation of low MW and HPO DOM.In addition,strong correlations between C-DBPFPs and SUVA,and between N-DBPFPs and DON/DOC,were observed in the wastewater,which might be helpful for DBPFP prediction in wastewater and reclaimed water chlorination.  相似文献   

13.
This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of ?PAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of ?PAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities.  相似文献   

14.
Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper–ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process.  相似文献   

15.
Freshwater reservoirs are regarded as an important anthropogenic source of methane (CH4) emissions. The temporal and spatial variability of CH4 emissions from different reservoirs results in uncertainty in the estimation of the global CH4 budget. In this study, surface water CH4 concentrations were measured and diffusive CH4 fluxes were estimated via a thin boundary layer model in a temperate river–reservoir system in North China, using spatial (33 sites) and temporal (four seasons) monitoring; the system has experienced intensive aquaculture disturbance. Our results indicated that the dissolved CH4 concentration in the reservoir ranged from 0.07 to 0.58 µmol/L, with an annual average of 0.13 ± 0.10 µmol/L, and the diffusive CH4 flux across the water–air interface ranged from 0.66 to 3.61 μmol/(m2•hr), with an annual average of 1.67 ± 0.75 μmol/(m2•hr). During the study period, the dissolved CH4 concentration was supersaturated and was a net source of atmospheric CH4. Notably, CH4 concentration and diffusive flux portrayed large temporal and spatial heterogeneity. The river inflow zone was determined to be a hotspot for CH4 emissions, and its flux was significantly higher than that of the tributary and main basin; the CH4 flux in autumn was greater than that in other seasons. We also deduced that the CH4 concentration/diffusive flux was co-regulated mainly by water temperature, water depth, and water productivity (Chla, trophic status). Our results highlight the importance of considering the spatiotemporal variability of diffusive CH4 flux from temperate reservoirs to estimate the CH4 budget at regional and global scales.  相似文献   

16.
With rapid economic growth and urbanization, the Yangtze River Delta(YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014–2016. In recent years, the concentrations of all air pollutants, except O_3,decreased. Spatially, the PM_(2.5), PM_(10), SO_2, and CO concentrations were higher in the northern YRD region, and NO_2 and O_3 were higher in the central YRD region. Based on the number of non-attainment days(i.e., days with air quality index greater than 100), PM_(2.5) was the largest contributor to air pollution in the YRD region, followed by O_3, PM_(10), and NO_2.However, particulate matter pollution has declined gradually, while O_3 pollution worsened.Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM_(2.5) concentration was inversely related to wind speed, while O_3 concentration was positively correlated with temperature and negatively correlated with relative humidity.The air quality improvement in recent years was mainly attributed to emission reductions.During 2014–2016, PM_(2.5), PM_(10), SO_2, NO_x, CO, NH_3, and volatile organic compound(VOC)emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.  相似文献   

17.
Local fluoride contamination and bacterial infections in potable water have dangerous effects on the human body and are today a global concern. In this study, we have synthesized a pH-responsive bifunctional biopolymer nanocomposite (HAZ) of humic acid with incorporating aluminum zirconium bimetallic oxide by deep freeze–drying method. Fast nucleation and interconnection of nanoparticles form a highly porous network because of sublimation of frozen HAZ. This duo nanocomposite has efficiently worked for fluoride removal and showed potent antibacterial activity against the Escherichia coli Gram-negative and Staphylococcus aureus Gram-positive bacteria. The X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the hydroxyl groups act as a pivot in the ion exchange process of adsorption, each element of bimetallic oxide primarily takes part in the adsorption mechanism. The maximum adsorption capacity of the adsorbent was 180.62 mg/g at pH seven. Thermodynamic parameters like Gibbs free energy change (ΔG0), entropy (ΔS0), and enthalpy (ΔH0) indicate that the process was endothermic, feasible, and taken place by a chemisorption mechanism. This is the first novel freeze–dried bifunctional biopolymer nanocomposite composed of humic acid natural polymer incorporated with Al–Zr metal oxide, and it exhibited three times higher adsorption efficacy with excellent antibacterial action at a concentration of 5 µg/mL of the nanocomposite.  相似文献   

18.
Commercial tungsten powder of average particle size 12 μm was mixed with 10 wt% Ni powder and plasma sprayed on a SUS304 stainless steel substrate. W–Ni composite coatings have been sprayed at different Ar plasma gas flow rates of 120, 150, and 170 l/min and different Ar carrier gas flow rates of 5, 8, and 10 l/min. The microstructure and phase structure of the sprayed coatings were investigated using a scanning electron microscope (SEM), X-ray diffraction (XRD), and an energy dispersive spectrometer (EDS). Corrosion tests were performed for the sprayed W–Ni coatings in a 3.5% NaCl solution using an electrochemical polarization method. It was found that the W–Ni coatings sprayed at a higher Ar gas flow rate showed higher corrosion resistance compared with coatings sprayed at a lower gas flow rate. A more positive value of the corrosion potential and a lower value of the corrosion current are observed for coatings sprayed at a higher Ar gas flow rate.  相似文献   

19.
The rapid development in Beijing, the capital of China, has resulted in serious air pollution problems. Meanwhile great efforts have been made to improve the air quality, especially since 1998. The variation in air quality under the interaction of pollution and control in this mega city has attracted much attention. We analyzed the changes in ambient air quality in Beijing since the 1980’s using the Daniel trend test based on data from long-term monitoring stations. The results showed that different polluta...  相似文献   

20.
This paper provides an overview of the impacts of rural land use on lowland streamwater phosphorus (P) and nitrogen (N) concentrations and P loads and sources in lowland streams. Based on weekly water quality monitoring, the impacts of agriculture on streamwater P and N hydrochemistry were examined along a gradient of rural–agricultural land use, by monitoring three sets of ‘paired’ (near-adjacent) rural headwater streams, draining catchments which are representative of the major geology, soil types and rural/agricultural land use types of large areas of lowland Britain. The magnitude and timing of P and N inputs were assessed and the load apportionment model (LAM) was applied to quantify ‘continuous’ (point) source and ‘flow-dependent’ (diffuse) source contributions of P to these headwater streams. The results show that intensive arable farming had only a comparatively small impact on streamwater total phosphorus (TP loads), with highly consistent stream diffuse-source TP yields of ca. 0.5 kg-P ha?1 year?1 for the predominantly arable catchments with both clay and loam soils, compared with 0.4 kg-P ha?1 year?1 for low agricultural intensity grassland/woodland on similar soil types. In contrast, intensive livestock farming on heavy clay soils resulted in dramatically higher stream diffuse-source TP yields of 2 kg-P ha?1 year?1. The streamwater hydrochemistry of the livestock-dominated catchment was characterised by high concentrations of organic P, C and N fractions, associated with manure and slurry sources. Across the study sites, the impacts of human settlement were clearly identifiable with effluent inputs from septic tanks and sewage treatment works resulting in large-scale increases in soluble reactive phosphorus (SRP) loads and concentrations. At sites heavily impacted by rural settlements, SRP concentrations under baseflow conditions reached several hundred μg-P L?1. Load apportionment modelling demonstrated significant ‘point-source’ P inputs to the streams even where there were no sewage treatment works within the upstream catchment. This indicates that, even in sparsely populated rural headwater catchments, small settlements and even isolated groups of houses are sufficient to cause significant nutrient pollution and that septic tank systems serving these rural communities are actually operating as multiple point sources, rather than a diffuse input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号