首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
研究目的在于调查寒冷季节城市污水处理厂出水中天然有机物化学组分分级,探讨各分级组分与消毒副产物生成潜能间之关系。采集污水厂二级出水,以三种不同树脂把污水厂出水中有机物分离成六类不同组分,其中A水厂含量最高的物质为亲水酸性物质(33%)而B水厂的疏水性中性物质含量最多约占总有机物的64%。从总体来看两水厂的疏水性物质含量大于亲水性物质含量,疏水性物质的三卤甲烷生成势也较大,是水体中消毒副产物的主要前驱物质。疏水性有机物质较多,代表受生活污水污染严重,得知该城市污水主要受民生污染较多。  相似文献   

2.
The source water in one forest region of the Northeast China had very high natural organic matter(NOM) concentration and heavy color during snowmelt period. The efficiency of five combined treatment processes was compared to address the high concentration of NOM and the mechanisms were also analyzed. Conventional treatment can hardly remove dissolved organic carbon(DOC) in the source water. KMn O4pre-oxidization could improve the DOC removal to 22.0%. Post activated carbon adsorption improved the DOC removal of conventional treatment to 28.8%. The non-sufficient NOM removal could be attributed to the dominance of large molecular weight organic matters in raw water, which cannot be adsorbed by the micropore upon activated carbon. O3+ activated carbon treatment are another available technology for eliminating the color and UV254 in water. However, its performance of DOC removal was only 36.4%, which could not satisfy the requirement for organic matter. The limited ozone dosage is not sufficient to mineralize the high concentration of NOM. Magnetic ion-exchange resin combined with conventional treatment could remove 96.2%of color, 96.0% of UV254 and 87.1% of DOC, enabling effluents to meet the drinking water quality standard. The high removal efficiency could be explained by the negative charge on the surface of NOM which benefits the static adsorption of NOM on the anion exchange resin. The results indicated that magnetic ion-exchange resin combined with conventional treatment is the best available technology to remove high concentration of NOM.  相似文献   

3.
Algal blooms and wastewater effluents can introduce algal organic matter (AOM) and effluent organic matter (EfOM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts (DBPs) during chlorination and chloramination from various types of dissolved organic matter (DOM, e.g., natural organic matter (NOM), AOM, and EfOM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was observed in NOM than AOM and EfOM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor (BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance (SUVA) increased. AOM favored the formation of iodinated THMs (I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor (ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.  相似文献   

4.
The source water in one forest region of the Northeast China had very high natural organic matter (NOM) concentration and heavy color during snowmelt period. The efficiency of five combined treatment processes was compared to address the high concentration of NOM and the mechanisms were also analyzed. Conventional treatment can hardly remove dissolved organic carbon (DOC) in the source water. KMnO4 pre-oxidization could improve the DOC removal to 22.0%. Post activated carbon adsorption improved the DOC removal of conventional treatment to 28.8%. The non-sufficient NOM removal could be attributed to the dominance of large molecular weight organic matters in raw water, which cannot be adsorbed by the micropore upon activated carbon. O3 + activated carbon treatment are another available technology for eliminating the color and UV254 in water. However, its performance of DOC removal was only 36.4%, which could not satisfy the requirement for organicmatter. The limited ozone dosage is not sufficient to mineralize the high concentration of NOM. Magnetic ion-exchange resin combined with conventional treatment could remove 96.2% of color, 96.0% of UV254 and 87.1% of DOC, enabling effluents to meet the drinking water quality standard. The high removal efficiency could be explained by the negative charge on the surface of NOM which benefits the static adsorption of NOM on the anion exchange resin. The results indicated that magnetic ion-exchange resin combined with conventional treatment is the best available technology to remove high concentration of NOM.  相似文献   

5.
FeOOH催化臭氧氧化滤后水中NOM的小分子副产物的生成   总被引:7,自引:0,他引:7  
鲁金凤  邱娇  马军  张涛  陈忠林  王欢 《环境科学》2009,30(3):765-770
以滤后水中富集、分离出的6种不同特性的天然有机物(NOM)组分为对象,考察了羟基氧化铁(FeOOH)催化臭氧氧化NOM各组分后小分子醛、酮及酮酸副产物的生成情况.发现FeOOH催化氧化比臭氧氧化提高了对NOM 各组分DOC和SUVA的去除率.FeOOH催化氧化并不能有效地降低NOM各组分小分子副产物的产量.催化氧化和臭氧氧化后,憎水中性物质(HON)的醛、酮、酮酸的总产量都最高,NOM碱性组分的小分子副产物产量都相对最低.NOM各组分催化氧化后甲醛和丙酮酸的产量最大,这和单独臭氧氧化的结论一致.特别是HON的甲醛产率占其醛、酮总产量的71.6%,单位DOC丙酮酸的产量达78.6 μg/mg.用NOM组分的小分子副产物折算DOC占各组分氧化后DOC的质量分数来间接显示氧化后剩余DOC的可生物降解性,发现催化氧化比单独臭氧氧化进一步提高了滤后水中NOM各组分的可生化性.  相似文献   

6.
Several soil samples were used to study how the characteristics of natural organic matter (NOM) affect sorption of organic compounds. These soils contains different amounts and types of NOM. Aromaticity of NOM (percentage of aromatic carbons) was determined from solid-state CPMAS 13C NMR spectra and the soil effective polarity was computed from the equation developed by Xing et al. Naphthalene was used to examine the sorption characteristics of NOM. Both aromaticity and polarity of NOM strongly affected sorption of naphthalene. Old NOM showed higher affinity than that in the surface, young soils. Sorption increased with increasing aromaticity and decreasing polarity. Thus, the sorption coefficients of organic contaminants cannot be accurately predicted without some consideration of NOM characteristics.  相似文献   

7.
Several soil samples were used to study how the characteristics of natural organic matter(NOM)affect sorption of organic compounds.These soils contains different amounts and types of NOM.Aromaticity of NOM(percentage of aromatic carbons)was determined from solid-state CPMAS^13 C NMR spectra and the soil effective polarity was computed from the equation developed by Xing et al.Naphthalene was used to examine the sorption characteristics of NOM.Both aromaticity and polarity of NOM strongly affected sorption of naphthalene.Old NOM showed higher affinity than that in the surface,young soils.Sorption increased with increasing aromaticity and decreasing polarity.Thus,the sorption coefficients of organic contaminants cannot be accurately predicted without some considerstion of NOM characteristics.  相似文献   

8.
IntroductionRecentresearchhasdemonstratedthatsorptionofhydrophobicorganiccompounds(HOC)insoilsandsedimentsiscontrolledbyorganicmatterunlessitscontentisverylow(Chiou ,1 989) .Thisisparticularlytrueinwater soilsystemsbecausewatermoleculesarepreferablyadsorbed…  相似文献   

9.
For effective wastewater reclamation and water recovery, the treatment of natural and effluent organic matters (NOM and EfOM), toxic anions, and micropollutants was considered in this work. Two different NOM (humic acid of the Suwannee River, and NOM of US and Youngsan River, Korea), and one EfOM from the Damyang wastewater treatment plant, Korea, were selected for investigating the removal efficiencies of tight nanofiltration (NF) and ultrafiltration (UF) membranes with different properties. Nitrate, bromate, and perchlorate were selected as target toxic anions due to their well known high toxicities. Tri-(2-chloroethyl)-phosphate (TCEP), oxybenzone, and caffeine, due to their different K ow and pK a values, were selected as target micropollutants. As expected, the NF membranes provided high removal efficiencies in terms of all the tested contaminants, and the UF membrane provided fairly high removal efficiencies for anions (except for nitrate) and the relatively hydrophobic micropollutant, oxybenzon. Through the wetlands, nitrate was successfully removed. Therefore, a fair process of combining membranes with an engineered wetland could be proposed for sustainable wastewater reclamation and optimum control of contaminats.  相似文献   

10.
分别采用普通氧化混凝法以及螯合技术综合法对某钢铁集团公司焦化厂焦化废水生化处理后出水进行深度处理。使用气相色谱-质谱(GC-MS)联用仪检测分析了生化处理废水以及两种深度处理技术处理后废水的有机污染物组成。研究结果表明,该螯合技术比普通氧化混凝技术更有效地去除焦化废水中大量的含氨氮、酚、氰、吡啶、硫化物、喹啉等有毒有害的有机污染物,特别是一些无法被氧化降解的杂环化合物及衍生物。  相似文献   

11.
采用液液萃取法和树脂吸附法对化工园区的生化尾水中溶解性有机污染物进行富集、分离,通过气相色谱-质谱分析表明化工生化尾水中普遍含有四氯乙烯、苯类和烷烃类有机毒物,而不同来源的化工生化尾水中疏水性、亲水性和中性有机质的含量相差较大,分子量分布也不相同,液相色谱-质谱分析表明树脂富集分离后,氨基酸、邻苯二甲酸酯和糖类物质成为尾水中主要有机物。  相似文献   

12.
Endocrine disrupting chemicals (EDCs) in the secondary effluent discharged from wastewater treatment plants (WWTPs) are of great concern in the process of water reuse. Ozonation has been reported as a powerful oxidation technology to eliminate micropollutants in water treatment. Due to the complexity of the wastewater matrix, orthogonal experiments and single factor experiments were conducted to study the influence of operational parameters on the degradation of 17αup-ethinylestradiol (EE2) in the synthetic secondary effluent. The results of the orthogonal experiments indicated that the initial ozone and natural organic matter (NOM) concentration significantly affected EE2 degradation efficiency, which was further validated by the single factor confirmation experiments. EE2 was shown to be effectively degraded by ozonation in the conditions of low pH (6), NOM (10 mg/L), carbonate (50 mg/L), but high suspended solid (20 mg/L) and initial ozone concentration (9 mg/L). The study firstly revealed that the lower pH resulted in higher degradation of EE2 in the synthetic secondary effluent, which differed from EDCs ozonation behavior in pure water. EE2 degradation by ozone molecule instead of hydroxyl radical was proposed to play a key role in the degradation of EDCs by ozonation in the secondary effluent. The ratio between O3 and TOC was identified as an appropriate index to assess the degradation of EE2 by ozonation in the synthetic secondary effluent.  相似文献   

13.
较传统的超滤过程,使用荷电膜的超滤技术能实现对水中天然有机物(NOM)更高的去除率,并同时减少膜污染。文章从膜材料性质、溶液环境和NOM性质这几方面来综述荷电超滤膜去除水中天然有机物的研究进展。最后对荷电超滤膜去除NOM方面的进一步研究工作提出了建议。  相似文献   

14.
Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Preozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.  相似文献   

15.
在受重金属污染的土壤中,天然有机质(NOM)和重金属通常会同时参与铁氧化物的转化.但关于这一重要的环境反应过程中重金属释放动力学的研究目前还比较少.为阐明NOM对铁氧化物转化过程中Cu释放行为的影响,本研究使用两种代表性NOM:富里酸(FA)和胡敏酸(HA),开展了二者存在下的"铁氧化物-重金属-NOM"转化研究,并对转化不同时间点的铁氧化物进行了Cu释放动力学实验.动力学实验中采用了一个流动搅拌装置模拟pH=5.5环境条件下Cu的释放过程.结果表明,Cu的释放量随着铁氧化物的转化而降低,NOM的存在增加了Cu在流动搅拌实验中的释放量.球差校正扫描透射电子显微镜(Cs-STEM)结果显示,铜可以掺入铁氧化物纳米颗粒中,可以有效固定Cu,而FA和HA处理均产生了具有疏松结构的椭球形颗粒,为Cu的吸附提供了丰富的位点.这种疏松的结构导致了更多吸附态Cu的存在,阻碍了铜的掺入,与Cu释放结果一致.因此,Cu释放能力的差异性主要是铁氧化物老化的结果,与Cu和NOM的络合关系不大.这项研究的结果将有助于更好地理解在NOM存在下铁氧化物转化过程中Cu的环境行为,同时在纳米尺度上阐明Cu和C与赤铁矿相互作用的机理.  相似文献   

16.
以某企业的石化废水处理工艺为对象,利用固相萃取-双杂交酵母法,对混入和未混入苯胺废水2种典型工况下进、出水的抗雌激素活性进行了研究,以了解不同性质废水的混合处理对石化废水抗雌激素活性的影响规律. 结果表明,现有的废水处理系统能有效降低有机物浓度,2种典型工况下溶解性有机碳(DOC)的去除率分别可达72%和74%,但生成了更具抗雌激素活性的物质. 在混入苯胺废水的工况下,出水的抗雌激素活性显著高于进水,为进水的2.8倍. 进一步研究废水中不同组分的抗雌激素活性发现,苯胺废水中的疏水性物质是导致出水抗雌激素活性升高的主要原因.   相似文献   

17.
超声与碱预处理对剩余污泥磷及有机物释放的影响   总被引:2,自引:1,他引:1  
为了回收污泥所含的磷,采用碱和超声波对3种剩余污泥进行预处理以释放磷,考察了处理前后PO3-4-P(正磷酸盐)、TP(总磷)、SCOD(可溶性COD)、TOC(总有机碳)、TS(总固体)、VS(挥发性固体)的释放规律及溶解性有机物的三维荧光特性变化.结果表明,碱和超声波处理均能有效破解污泥,释放磷和有机物;城市污泥比制药污泥更容易破解;城市污泥无机磷的释放高于有机磷,而工业污泥的有机磷释放高于无机磷;采用生物脱氮除磷工艺的城市污泥释放磷最多,释放有机物最少,有利于磷的进一步回收.碱处理和超声处理都不会从根本上改变污泥上清液中有机物的组分,但碱处理能促进污泥蛋白质类、腐殖酸类和富里酸类有机物的释放.  相似文献   

18.
活性炭物化性质对吸附天然水体中有机污染物的影响   总被引:8,自引:5,他引:3  
研究了天然水体条件下2种合成有机污染物(SOC)甲基对硫磷(MP)和三氯乙烯(TCE)以及天然有机物(NOM)在5种粉末活性炭(PAC)上的吸附特性.在对活性炭的物化特性进行全面表征的基础上,利用相关分析方法揭示了PAC的物理和化学性质对天然水体中SOC类小分子有机污染物吸附的影响;并利用高效体积排阻色谱法(HPSEC...  相似文献   

19.
采集不同填埋年限垃圾和渗滤液,提取制备水溶性有机物(DOM),采用紫外光谱、荧光光谱及1H-核磁共振,研究垃圾填埋DOM组成、演化及络合重金属特征.结果表明,填埋初期(5 a)DOM以脂肪族类物质为主,DOM中芳香族物质随填埋进行含量降低,苯环结构上的羰基、羧基和羟基等随填埋进行不断减少;填埋中后期(5 a)DOM以碳水化合物、有机胺等为主,随着填埋年限的延伸DOM中芳香性物质含量上升,苯环上羰基、羧基和羟基等官能团不断增加.填埋产生的渗滤液原液DOM中同时含有脂族类物质、碳水化合物、有机胺等,渗滤液经过厌氧-好氧和MBR处理后,碳水化合物和芳香族化合物含量相对增加,但小分子有机物和烷基链烃物质含量减少,脂肪链支链变短,分支增加.垃圾填埋DOM通过含氮和含氧官能团络合金属Zn从而影响其分布,而对其他金属的分布影响较小.  相似文献   

20.
郭璇  陈绍棋 《地球与环境》2017,45(5):515-522
以日本长良川原水为研究对象,提高水处理出水水质为目标,研究了生物活性炭(BAC)小柱对原水中天然有机物(NOM)的去除效果。比较了不同NOM进水浓度时BAC小柱对其的去除率,研究了小柱层内及出水中NOM的相对分子量分布随着通水时间增加的变化情况,并利用结合了理想吸附溶液理论(IAST)的平推流表面扩散模型对出水中NOM的浓度进行模拟。结果表明,BAC小柱对不同浓度原水中NOM的去除率均高于相同试验条件下的粒状活性炭(GAC)小柱;BAC小柱对相对分子量分布为1000~5200g/mol内各分子量区间的有机物均可去除;平推流表面扩散模型对试验数据拟合结果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号