首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 513 毫秒
1.
利用连续流双污泥生物澄清反应器(BCR)反硝化除磷系统,以模拟城市生活污水为处理对象,研究双污泥系统对COD、NH4+-N、TN的去除效果及不同NO3--N浓度对反硝化除磷的影响。试验结果表明:双污泥BCR反硝化除磷系统对COD、NH4+-N和TN具有良好的去除效果,平均去除率分别为83.22%、97.2%、75.47%。控制生物膜好氧硝化反应池中DO浓度为3、4、5 mg/L,池内NO3--N浓度分别达到22、30、38 mg/L,TP的平均出水浓度分别为2.11、0.96、2.69 mg/L。当硝化池中NO3--N浓度为30 mg/L时,系统的运行情况较好,出水TP的浓度相对较理想。  相似文献   

2.
苯酚对厌氧氨氧化污泥脱氮效能长短期影响   总被引:5,自引:4,他引:1  
杨朋兵  李祥  黄勇  朱亮  崔剑虹  徐杉杉 《环境科学》2015,36(10):3771-3777
通过接种厌氧氨氧化(ANAMMOX)污泥,研究了苯酚浓度对ANAMMOX污泥脱氮效能长短期影响.短期结果表明,随着苯酚浓度的增大,氮去除率快速下降.当苯酚浓度大于600 mg·L-1时,NH+4-N的去除率降低到6%以下,TN的去除率只有10%左右.长期实验结果表明,当苯酚浓度小于100 mg·L-1时,NH+4-N的去除率都能达到99%以上,说明低浓度苯酚对ANAMMOX菌有一个驯化的过程.当苯酚浓度高于400 mg·L-1时,NH+4-N的去除率只有23.59%,TN去除率只有50.3%,ANAMMOX污泥抑制明显,与短期结果相同.此时反硝化菌活性明显高于ANAMMOX菌,说明苯酚可作为有机碳源诱发体系中发生反硝化反应,最终导致反硝化菌在体系中占据主导地位.但高浓度(1 000 mg·L-1)苯酚对反硝化菌也具有抑制作用.通过拟合得到苯酚对ANAMMOX半抑制有效浓度(IC50)为71.57 mg·L-1.经过18 d的恢复后,NH+4-N去除率基本恢复,但氮素之间的转化计量式发生了改变,ρ(NH+4-N)去除/ρ(NO-2-N)去除/ρ(NO-3-N)生成为1∶0.86∶0.2.研究结果表明,将苯酚控制在合理范围内可以使反应器达到同步脱氮除酚的效果.  相似文献   

3.
SBR不同进水中反硝化除磷颗粒污泥的培养   总被引:1,自引:0,他引:1       下载免费PDF全文
分别以人工配水、加Ca~(2+)人工配水和实际生活污水为进水水源,在A/O/A运行模式的3套SBR反应器(R1、R2和R3)中培养反硝化除磷颗粒污泥,研究了其生化特性和启动过程的除污性能,分析了反硝化除磷能力,最后对颗粒化机理进行了探讨,重点考察了反硝化除磷颗粒污泥启动过程中对COD、NH_4~+-N、TN和TP的去除情况.结果表明,R1~R3均在30 d内成功得到反硝化除磷颗粒污泥,颗粒污泥平均粒径大于600μm,比重和比耗氧速率较大,含水率较低;培养过程中出水COD平均值低于40 mg·L~(-1),出水TN、NH+4-N及TP平均浓度低于1 mg·L~(-1);系统稳定后一个典型周期内试验表明,COD、NH_4~+-N、TN和TP的去除效果良好,对COD、NH+4-N、TN及TP的去除率可达90%以上;R1~R3中最大比释磷速率分别达14.34、8.32和2.32 mg·g·h~(-1)(以每g MLVSS每小时释放的P量(mg)计),R1~R2中最大比吸磷速率分别达14.13和2.34mg·g·h~(-1)(以每g MLVSS每小时吸收的P量(mg)计);试验结果表明,Ca~(2+)对颗粒化有促进作用.  相似文献   

4.
溶解氧对Biolak型A2O工艺脱氮除磷性能的影响   总被引:1,自引:0,他引:1  
通过对Biolak型A2O工艺处理生活污水工程应用的研究,考察了好氧段溶解氧(DO)浓度对该工艺脱氮除磷的影响.试验结果表明,DO浓度变化对系统COD、NH+4-N处理效果的影响不大,而对系统总氮及总磷的去除效果影响显著.当DO浓度控制在0.80~1.50 mg·L-1之间时,系统总氮去除效果最佳,可以达到69.5%,系统好氧段可实现同步硝化反硝化除氮.通过对系统氮进行物料衡算发现,23.7%的总氮通过好氧段多级A/O反硝化脱氮去除.当DO浓度为1.00~3.00 mg·L-1时,总磷(TP)去除率较高,可以达到74.0%.DO浓度控制在1.00~1.50 mg·L-1之间时,系统脱氮除磷效果最佳,此时TN、TP的去除率分别为68.9%、73.7%,二级生化处理段出水TN、TP分别为12.02、0.95 mg·L-1.  相似文献   

5.
蠡河底泥中反硝化复合菌群富集及菌群结构研究   总被引:2,自引:2,他引:0  
雍佳君  成小英 《环境科学》2015,36(6):2232-2238
从无锡市滨湖区蠡河底泥中富集培养反硝化复合菌群,研究其在不同富集培养阶段TN、NO-3-N、NO-2-N、NH+4-N和COD动态变化,分析反硝化过程中气体释放总量、释放速率和成分,通过构建全长16S r DNA克隆文库研究其菌落结构.结果表明,反硝化复合菌群富集在阶段4时脱氮效果最佳,仅在9 h内,330 mg·L-1的TN负荷下,TN去除率达90.9%,NO-3-N去除率达100%,中间产物NO-2-N和NH+4-N积累量最少,分别为3.39 mg·L-1和16.64 mg·L-1,COD去除率达85%;释放气体260m L,气体主要成分为N2,同时还有少量的CH4和CO2等.富集培养反硝化复合菌群细菌属于Pseudomonadaceae科和Rhodocyclaceae科,为Proteobacteria门,OUT丰度分别为57.8%和31.6%,Pseudomonadaceae科是优势类群.  相似文献   

6.
为提高煤矿生活污水脱氮效果并优化反应方式,采用限氧曝气生物膜反应器进行试验研究,分析了污染物去除效果和主要影响因素。结果表明:在第一反应室DO为1.5~2 mg/L、第二反应室DO为1~1.5 mg/L、HRT为3.13 h、ρ(COD)=69.8~85.2 mg/L、ρ(NH4+-N)=14. 6~17.9 mg/L、ρ(TN)=17.3~21.2 mg/L的进水条件下,反应器出水COD、NH4+-N、TN最大质量浓度分别为18.3 mg/L、0.23 mg/L和8.92 mg/L,平均去除率分别为80.8%、99.3%和59.3%,同步硝化反硝化效率(SND率)为45.4%~56.5%;在2.78 h≤HRT≤4.17 h范围内,反应器出水COD和NH4+-N浓度达到GB 3838—2002Ⅲ类标准要求,出水ρ(TN)10 mg/L且SND率达到52%。  相似文献   

7.
以低C/N值生活污水为处理对象,重点考察了以厌氧/缺氧(A/A)运行的ABR耦合好氧MBR系统启动过程中脱氮除磷特性及系统长期运行的稳定性.结果表明,控制ABR容积负荷(VLR)为0. 8 kg·(m3·d)-1,污泥回流比为80%,硝化液回流比从150%逐步提升稳定至300%,反硝化除磷功能区污泥停留时间(sludge retention time,SRT)为25 d,MBR溶解氧(DO)为1~2 mg·L~(-1),温度为30℃±2℃,于46 d成功富集了反硝化聚磷菌(denitrifying phosphorus bacteria,DPBs),净释磷量为20. 56 mg·L~(-1),净吸磷量达到27. 74 mg·L~(-1),批次实验表明约84. 8%的聚磷菌(PAOs)能够利用NO-3-N作为电子受体进行反硝化除磷.启动成功后稳定运行50 d,对COD、NH+4-N、TN和PO_4~(3-)-P的平均去除率分别为91. 8%、99. 0%、71. 5%和94. 2%,系统缺氧反硝化除磷去除1 mg·L~(-1)的PO_4~(3-)-P,同步消耗约0. 83 mg·L~(-1)的NO-3-N,满足同步脱氮除磷的要求.  相似文献   

8.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

9.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

10.
针对碳源偏低的城市污水,文章采用厌氧/限氧的连续流活性污泥反应器,控制水力停留时间为14 h,污泥回流比为1,COD为80~180 mg/L、TP为8.95~12.25 mg/L、NH_4~+-N为30~33.5 mg/L,考察溶解氧(DO)和二沉池沉淀时间对亚硝化/反硝化同步反应的影响,并对系统微生物菌群进行研究分析。结果表明,污泥中AOB与NDPAOs 2种菌群属类的配比为1.113时,DO范围在0.4~0.7 mg/L,二沉池沉淀时间为3 h,A/OLA连续流中亚硝化和反硝化2个生化反应平衡,脱氮除磷效果最佳,TP的去除率为98.32%,TN的去除率为98.61%。  相似文献   

11.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷.  相似文献   

12.
1株异养硝化-好氧反硝化细菌DK1的分离鉴定及其脱氮特性   总被引:7,自引:3,他引:4  
从某反应器活性污泥中分离筛选出1株假单胞菌属(Pseudomonas sp.)细菌,命名为DK1,并对该菌进行脱氮特性研究.在以葡萄糖为碳源,C/N量比为5时,分别以NaNO_3和NaNO_2为氮源,二者的好氧反硝化速率为4.09 mg·(L·h)-1和4.43mg·(L·h)~(-1).以二者同时为氮源脱氮率为100%;此外,菌株DK1具有异养硝化性能,NH_4~+-N平均去除速率为2.32mg·(L·h)-1.缺氧时以NO_2~--N为氮源菌株DK1可将一系列梯度浓度NO_2~--N(约100~300 mg·L-1)在36 h内降为0.当NO_3~--N和NO_2~--N同时存在时,菌株DK1会优先利用NO_3~--N进行反硝化.同时该菌株还具有同步硝化反硝化(SND)性能,可同时去除NH_4~+-N、NO_2~--N或NH_4~+-N、NO_3~--N,30 h内脱氮率分别达95.06%和94.69%.相同时间内在NH_4~+-N、NO_2~--N和NO_3~--N三者均存在时,脱氮效果最佳,达100%.菌株DK1的高效SND及反硝化性能表明其在处理含氮废水方面有一定的潜力和应用价值.  相似文献   

13.
东江干流水体氮的时空变化特征及来源分析   总被引:1,自引:0,他引:1  
为了防治东江氮污染并进行针对性水体治理,于2013年7月(丰水期)和2014年1月(枯水期)全面调查了东江干流水体氮的时空变化特征,并利用附生藻的稳定性氮同位素示踪技术对东江水体氮进行了溯源研究.结果表明,TN、NO-3-N、NH+4-N在丰水期的平均浓度分别为2.70、1.63、0.21 mg·L-1,高于枯水期(TN,2.04 mg·L-1;NO-3-N,1.49 mg·L-1;NH+4-N,0.31 mg·L-1);东江水体氮含量较高,且主要以NO-3-N形态存在.各形态氮浓度自上游至下游的变化趋势表现为,TN和NO-3-N先递减再升高,NH+4-N则逐渐递增.稳定性氮同位素示踪表明,面源输入的人畜粪便、养殖废水及农业化肥等是上游区域氮的主要来源,贡献率约占91%;而在下游区域,城市污水的贡献率逐渐增大,并成为氮的主要来源,贡献率达到54%.  相似文献   

14.
基于CANON工艺的新型HABR反应器生物脱氮性能研究   总被引:2,自引:1,他引:1  
鲍林林  陈婉秋 《环境科学》2016,37(7):2639-2645
采用新型复合式折流板反应器(HABR)启动及运行全程自养脱氮(CANON)工艺.通过缩短水力停留时间(HRT)的方式提高进水总氮负荷启动反应器,反应器运行成功后,考察反应器沿程氮素、电导率、p H值及MLSS的变化规律,并对反应器内微生物种群形态结构及空间分布进行分析.结果表明,当进水NH_4~+-N平均浓度为40 mg·L~(-1)时,经过89 d的连续运行,新型HABR反应器实现了快速启动,并能稳定运行至187 d,稳定运行期出水NH_4~+-N和TN浓度分别稳定在2 mg·L~(-1)和10 mg·L~(-1)以下,去除率分别达到96%和83%以上,NRR达到0.15 kg·(m~3·d)~(-1).稳定运行阶段,NH_4~+-N与TN浓度在反应器沿程逐渐降低,NO-2-N和NO-3-N的生成量一直维持在较低浓度.第1个单元格脱氮效率最高,通过SEM和FISH分析表明,在第1个单元格中存在丰富的功能菌种亚硝化菌(AOB)和厌氧氨氧化菌(An AOB).  相似文献   

15.
海水异养硝化-好氧反硝化芽孢杆菌SLWX2的筛选及脱氮特性   总被引:4,自引:3,他引:1  
成钰  李秋芬  费聿涛  张艳 《环境科学》2016,37(7):2681-2688
从分离自刺参养殖环境的7株候选菌株中筛选出1株具有较强异养硝化和好氧反硝化能力的菌株SLWX_2,通过形态学特征、生理生化特性和16S rRNA基因测序分析鉴定其为花津滩芽孢杆菌(Bacillus hwajinpoensis).该菌株脱氮特性研究结果表明,SLWX_224 h对氨氮、亚硝酸氮和硝酸氮的去除率分别达到100%、99.5%和85.6%;当3种无机氮源同时存在时,菌株优先利用氨氮,再利用NO_2~--N和NO_3~--N,72 h 3种无机氮的质量浓度均降至0.013 mg·L~(-1)以下,表明该菌株能同时进行异养硝化和好氧反硝化完成脱氮;在氨氮负荷500 mg·L~(-1)、亚硝酸氮负荷100 mg·L·~(-1)和硝酸氮负荷200 mg·L~(-1)范围内,该菌的脱氮能力不受明显抑制,对3种形态的氮均有良好去除效果,96 h最多可去除180 mg NH_4~+-N、30 mg NO_2~--N和120 mg NO_3~--N,并且在硝化过程中没有亚硝酸氮积累.该菌株在海水养殖和高盐高氮工业废水的脱氮处理方面具有更大潜力.  相似文献   

16.
本研究构建了厌氧膜生物反应器(AnMBR)-部分亚硝化/厌氧氨氧化(PN/Anammox)污水处理工艺,以探究AnMBR-PN/A工艺处理效果最佳的水力停留时间(HRT).AnMBR将厌氧生物处理与膜分离技术相结合实现有机物去除,AnMBR出水NH4+-N通过PN部分转化为NO2--N,最终通过NO2--N氧化剩余NH4+-N去除.实验结果表明:在HRT=11.2 h时,AnMBR-PN/A工艺化学需氧量(COD)去除率稳定在97%以上,COD转化为CH4效率超过77.5%,总氮(TN)去除率为78%,出水COD和TN浓度分别低于14和11 mg·L-1.AnMBR段COD去除率达到95%,平均甲烷产率为0.39 L·L-1·d-1.PN段实现了NO2--N的高效积累,其出水中NO2-/NH4+为0.91±0.11.Anammox段出水中的NO2--N、NH4+-N和NO3--N浓度分别低于1.0、4.9和5.1 mg·L-1.高通量测序结果表明PN段氨氧化菌主要为Nitrosomonas,丰度为7.09%,Anammox段主要微生物为Candidatus Brocadia,丰度高达21.01%.本研究构建的AnMBR-PN/A工艺实现了污水处理过程的高效能源回收和深度自养脱氮,研究成果为工程应用提供了理论支撑.  相似文献   

17.
采用外循环序批式反应器(ECSBR),通过向反应器中分阶段投加硫化物,成功抑制体系中亚硝酸氧化菌(NOB)的活性,实现了城市污水单级短程硝化/厌氧氨氧化自养生物脱氮,出水氨氮为3.78 mg·L-1,氨氮去除率为88.4%,氮去除负荷为66.8 g·m-3·d-1.在投加硫化物前,系统氮转化途径以全程硝化为主,出水硝酸盐为13 ~22 mg·L-1,生成硝态氮与去除氨氮比值>0.9.在投加硫化物后,NOB的活性受到了抑制,出水硝酸盐降为4.18 mg·L-1,生成硝酸盐与去除氨氮比值平均为0.17.体系中大量的氮以氮气的形式被去除,占进水氮的65.4%.氮转化途径由全程硝化向短程硝化/厌氧氨氧化耦合脱氮转化.研究还表明,硫化物对于体系NOB的抑制是可逆的,停止投加硫化物后,NOB的活性又重新恢复.因此,分阶段投加硫化物能保证反应过程中对NOB的持续抑制作用,为实现单级自养脱氮工艺的快速启动和稳定维持提供了一种新的策略.  相似文献   

18.
采用厌氧折流板反应器(ABR)为研究对象,以一定COD、NH+4-N和NO-2-N比例增加进水基质浓度,以明确基质负荷提高对ABR厌氧氨氧化和反硝化协同体系脱氮除碳的影响,并通过基质去除模型获得反应器对基质的耐受程度.研究表明,ABR反应器能够实现厌氧氨氧化反硝化耦合脱氮除碳,当进水基质COD、NO-2-N和NH+4-N浓度从220、168和60 mg·L~(-1)提高至420、270和110 mg·L~(-1)时,反应器脱氮效能下降,COD、NO-2-N、NH+4-N和TN去除率分别为97%、94%、30%和78%,厌氧氨氧化对TN去除的贡献率从43.08%骤降至16.49%,反硝化脱氮贡献率从53.81%增至82.07%.动力学模型拟合发现,Stover-Kincannon模型(R2=0.937,TN;R2=0.975,COD)较一级基质去除模型(R2=0.314,TN;R2=0.016,COD)更适合评价反应器对基质的承受力;Stover-Kincannon模型表明,反应器对TN和COD的最大基质利用率分别为1.43 g·L-1·d-1和3.33 g·L-1·d-1,饱和常数(KB)分别为1.2和3.79,研究认为ABR协同脱氮除碳体系理论上还有继续提升基质负荷的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号