首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
由于含氮废水的大量排放,水体富营养化日趋严重,如何高效去除废水中的氮素仍是亟待解决的问题.针对传统生物脱氮工艺流程复杂、能耗高、抗冲击能力弱以及释放温室气体N_2O等缺陷,本文基于高效异养硝化细菌Pseudomonas aeruginosa YL,通过探讨其生理生化特征、异养硝化-好氧反硝化脱氮过程和N_2O产生特性,进一步解析异养硝化脱氮理论.结果表明,菌株YL具有高效的异养硝化和好氧反硝化能力,24 h培养期100 mg·L~(-1)的NH_4~+-N、NO_2--N和NO_3~--N能够完全去除;异养硝化过程几乎无中间产物生成,但以NO_3~--N作为氮源时,NO_2--N累积量高达25. 55 mg·L~(-1).同时,反硝化功能基因nap A、nir K和nos Z基因的成功表达,进一步证实菌株YL具有好氧反硝化能力.菌株YL异养硝化-好氧反硝化过程气态氮产物约占去除TN的30%~40%,脱氮产物主要为N2,当NH_4~+-N、NO_2--N和NO_3~--N分别为唯一氮源时,N2生成量分别为3. 46、3. 49和3. 36 mg.相比较,菌株YL脱氮过程仅生成微量的中间产物N_2O,以NH_4~+-N为唯一氮源时的最终生成总量为6. 63μg,低于以NO_2--N和NO_3~--N为唯一氮源时N_2O的生成量.此外,高C/N、低pH、高温以及高NH_4~+-N和NO_2--N环境均会导致N_2O的大量生成,但大多数环境因素对菌株YL的N_2O生成量影响较小,且其最高生成量显著低于短程硝化系统和自养硝化系统.以上研究结果表明菌株YL具有优异的脱氮、N_2O控逸和环境耐受能力,可有效避免水处理过程对大气的二次污染.  相似文献   

2.
海水异养硝化-好氧反硝化芽孢杆菌SLWX2的筛选及脱氮特性   总被引:4,自引:3,他引:1  
成钰  李秋芬  费聿涛  张艳 《环境科学》2016,37(7):2681-2688
从分离自刺参养殖环境的7株候选菌株中筛选出1株具有较强异养硝化和好氧反硝化能力的菌株SLWX_2,通过形态学特征、生理生化特性和16S rRNA基因测序分析鉴定其为花津滩芽孢杆菌(Bacillus hwajinpoensis).该菌株脱氮特性研究结果表明,SLWX_224 h对氨氮、亚硝酸氮和硝酸氮的去除率分别达到100%、99.5%和85.6%;当3种无机氮源同时存在时,菌株优先利用氨氮,再利用NO_2~--N和NO_3~--N,72 h 3种无机氮的质量浓度均降至0.013 mg·L~(-1)以下,表明该菌株能同时进行异养硝化和好氧反硝化完成脱氮;在氨氮负荷500 mg·L~(-1)、亚硝酸氮负荷100 mg·L·~(-1)和硝酸氮负荷200 mg·L~(-1)范围内,该菌的脱氮能力不受明显抑制,对3种形态的氮均有良好去除效果,96 h最多可去除180 mg NH_4~+-N、30 mg NO_2~--N和120 mg NO_3~--N,并且在硝化过程中没有亚硝酸氮积累.该菌株在海水养殖和高盐高氮工业废水的脱氮处理方面具有更大潜力.  相似文献   

3.
作者从活性污泥中筛选得到2株具有异养硝化-好氧反硝化能力的菌株S4和S9,经鉴定分别为枯草芽孢杆菌(Bacillus subtilis)和铜绿假单胞菌(Pseudomonas aeruginosa)。在单菌株异养硝化、好氧反硝化性能探究的基础上进行菌株复配,考察复合菌同步硝化反硝化性能及不同环境因素对其脱氮效果的影响。结果表明:S4和S9最大氨氧化速率分别为6.5和6.82 mg/(L·h);好氧条件下,NO_3~--N去除率达91.7%和96.1%,NO_2~--N去除率为73.4%和86.23%。S4、S9按1∶2进行复配,脱氮效果最佳,TN去除率达92.69%;混合氮源中,菌株更倾向于利用NH_4~+-N。单因素实验中,转速180 r/min,C/N为15,复合菌具有最佳脱氮效果,NH4+-N浓度为100~200 mg/L时氮去除效率最高,这与利用Haldane模型拟合得到的最佳底物浓度167.13 mg/L相一致。  相似文献   

4.
白洁  陈琳  黄潇  胡春辉  赵阳国  李岿然 《环境科学》2018,39(10):4793-4801
从胶州湾沉积物中分离出1株异养硝化-好氧反硝化菌株B307,采用16S rRNA基因序列分析对该菌株进行鉴定,采用单因素实验对其进行条件优化和耐盐特性研究,并在最优条件下考察其在单一和混合氮源中的脱氮效果.结果表明,该菌为Zobellella sp.,其最佳碳源为丁二酸钠,最适C/N为5,最适初始p H为9,最适温度为35~40℃.该菌株在混合氮源体系中12 h对NH_4~+-N和NO_3~--N的去除率分别为98.35%和99.75%;在盐度为75 g·L~(-1)(以NaCl计)条件下24 h对NH_4~+-N和NO_3~--N去除率仍分别保持在97.67%和94.39%.表明该菌株具有高效的异养硝化-好氧反硝化能力和较强的耐盐特性,在高盐废水脱氮等领域具有广泛的应用前景.  相似文献   

5.
基质比对厌氧氨氧化耦合反硝化脱氮除碳的影响   总被引:1,自引:0,他引:1  
安芳娇  黄剑明  黄利  乔瑞  王瑾  陈永志 《环境科学》2018,39(11):5058-5064
采用SBR处理实际生活污水,在实现半亚硝化时,其出水加入定量的Na NO_2作为厌氧氨氧化过程厌氧序批式反应器(ASBR)的进水.在温度为24℃、pH为7. 2±0. 2时,考察不同进水NO_2~--N/NH_4~+-N对厌氧氨氧化耦合反硝化脱氮除碳的影响.结果表明:(1)进水NO_2~--N/NH_4~+-N为1. 4~1. 6时系统脱氮效能最佳,NH_4~+-N、NO_2~--N和COD平均出水浓度分别为2. 14、1. 07和30. 50 mg·L~(-1),三者去除率分别为93. 62%、97. 79%和74. 75%,ΔNO_2~--N/ΔNH_4~+-N和ΔNO_3~--N/ΔNH_4~+-N分别为1. 60和0. 17,TN的去除是异养反硝化菌和厌氧氨氧化菌共同作用的结果.(2)随着进水NO_2~--N/NH_4~+-N的逐渐增大,厌氧氨氧化对脱氮的贡献率逐渐减小,异养反硝化对脱氮的贡献率逐渐增加.(3)典型周期内,NH_4~+-N和NO_2~--N的降解过程均为零级反应,线性关系良好,比降解速率分别为0. 404 mg·(g·h)~(-1)和0. 599 mg·(g·h)~(-1),两者的比降解速率之比为1. 48,COD的比降解速率呈现逐渐增大的趋势.  相似文献   

6.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷.  相似文献   

7.
好氧反硝化菌P.chengduensis ZPQ2的筛选及其反硝化条件优化   总被引:2,自引:1,他引:1  
使用极限稀释和显色培养的筛选方法,从SBR好氧反硝化反应器的活性污泥中筛选到1株高效好氧反硝化细菌,编号为ZPQ2。经生理生化分析和16S rD NA基因鉴定,该菌株属于假单胞菌属,与2014年确立的新菌种Pseudomonas chengduensis的模式菌MBR的亲缘性99.1%,命名为P.chengduensis ZPQ2(KT001069)。通过优化实验获得其最佳好氧反硝化条件为:培养温度35℃,初始pH为11,柠檬酸钠为唯一碳源,C/N为11∶1,盐度为2%,经48h培养,菌株ZPQ_2对NO_3~--N和COD去除率分别达到93.4%和98.1%。菌株ZPQ2也具有异养硝化能力,以NaNO_2或(NH-4)2SO4为唯一氮源时,48h的NO_2~--N和NH_4~+-N去除率分别为28.64%和73.32%。  相似文献   

8.
杨振琳  于德爽  李津  王晓霞  冯莉 《环境科学》2018,39(10):4612-4620
采用SBR反应器研究海藻糖强化厌氧氨氧化耦合反硝化工艺(SAD)处理高盐水的脱氮除碳效能及其动力学特性.当海藻糖为0.25 mmol·L~(-1)时反应器具有最佳的脱氮效能,NH_4~+-N、NO_2~--N、NO_3~--N和COD均可以被完全去除,与没有添加海藻糖相比,NH_4~+-N、NO_2~--N和总氮去除率分别提高了50%、43%和46%,氨氮去除速率(ARR)和亚硝氮去除速率(NRR)分别提高了81.25%和75%.当海藻糖浓度进一步提升至0.5 mmol·L~(-1)时,NH_4~+-N去除率(ARE)仅为58.82%,出水NH_4~+-N浓度下降为33.25 mg·L~(-1).相比于Haldane模型和Aiba模型,Luong模型更适合拟合海藻糖添加条件下SAD的脱氮性能.由其得到的NRRmax、KS、Sm和n分别为0.954 kg·(m3·d)-1、0 mg·L~(-1)、184.785 mg·L~(-1)和0.718.与修正的Logistic模型和修正的Boltzman模型相比,修正的Gompertz模型得到的预测值与实验值最为贴近,修正的Gompertz模型更适合描述海藻糖添加条件下单周期内基质的降解过程.  相似文献   

9.
王静  刘洪杰  雷禹  徐晶  宋立岩  李勇 《环境科学》2017,38(3):946-953
三峡库区是新形成的生态系统,沉积物特征较之成库前有显著改变;研究库区小江支流——南河沉积物的硝化与反硝化过程可以为库区氮素管理提供科学依据,而反季节蓄水和泄水,沉积物-水界面硝化与反硝化速率特征鲜见报道.实验选取库区开县南河沉积物为研究对象,在2015年泄水期(8月)和蓄水期(11月)采集上、下游以及南河与小流域菁林溪交汇处沉积物样品,测定其理化指标;同时通过实验室模拟沉积物水环境,以乙炔抑制法测定泄水期与蓄水期沉积物的硝化反硝化速率.结果表明,蓄水期沉积物总氮(total nitrogen,TN)、铵态氮(ammonium nitrogen,NH_4~+-N)、硝态氮(Nitrate nitrogen,NO_3~--N)及总有机碳(total organic carbon,TOC)等理化指标均显著高于泄水期(P0.05),这说明蓄水期有外源物质入库;沉积物硝化速率在蓄水期[194.06μmol·(m~2·h)~(-1)]显著高于泄水期[16.52μmol·(m~2·h)~(-1)],且硝化速率与沉积物理化特征(TN、NH_4~+-N、NO_3~--N、TOC)存在显著正相关;沉积物反硝化速率则与硝化速率相反,泄水期[647.20μmol·(m~2·h)~(-1)]高于蓄水期[24.04μmol·(m~2·h)~(-1)],其与沉积物理化指标(TN、NH_4~+-N、NO_3~--N)呈显著负相关.  相似文献   

10.
采用序批式活性污泥反应器-厌氧折流板反应器(SBR-ABR)组合工艺,构建"部分亚硝化-厌氧氨氧化反硝化"(PNSAD)反应链实现深度脱氮除碳.设定3种不同的运行工况,工况Ⅰ将SBR出水(NO_2~--N/NH_4~+-N为1~1.32)直接接入单隔室ABR厌氧氨氧化系统,发现虽然实现了厌氧氨氧化反应的稳定运行,但联合工艺总氮(TN)去除率低于80%,出水TN约20mg·L~(-1).为在ABR内增加反硝化功能,向ABR反应器第三隔室添加反硝化污泥,于工况Ⅱ将SBR出水接入,发现耦合反应对TN去除率仍偏低若实现深度脱氮需在厌氧氨氧化后段补充碳源.故在工况Ⅲ调控SBR出水(NO_2~--N/NH_4~+-N=5)与部分原水混合(NO_2~--N/NH_4~+-N=1.4;C/N=2.5),接入单隔室ABR厌氧氨氧化反硝化系统不仅实现了厌氧氨氧化段基质的良好配比,也为反硝化提供了良好的有机碳源,整个工艺出水COD为50左右,TN在6以下,TN去除率达到95%.在SBR-ABR反应器内构建PN-SAD联合反应为废水深度脱氮除碳提供了理论基础.  相似文献   

11.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

12.
李冬  魏子清  劳会妹  李帅  张杰 《环境科学》2019,40(12):5456-5464
为实现低C/N城市污水的同步脱氮除磷,采用SBR反应器以厌氧/好氧(A/O)为运行方式,在保持总曝气量900 L不变的条件下调整曝气策略[将均匀曝气2. 81 L·(h·L)-1改为先高强度4. 22 L·(h·L)-1后低强度1. 88 L·(h·L)-1的"高/低曝气"和先低强度1. 88 L·(h·L)-1后高强度4. 22 L·(h·L)-1的"低/高曝气"].试验考察了不同曝气策略下系统的脱氮除磷性能及污泥特性.结果表明,高/低曝气下系统的脱氮除磷效果最佳,出水NH_4+-N、NO_2--N、NO_3--N和TP浓度分别为0、0. 15、8. 12和0. 04 mg·L~(-1),总氮(TN)和总磷(TP)去除率分别为78. 33%和99. 19%,同步硝化内源反硝化(SNED)作用明显,SNED率为77. 08%.且相比于均匀曝气,系统硝化速率及反硝化速率均增加,反硝化速率(以N/VSS计)达到整个运行过程中的最大值,为14. 33 mg·(g·h)-1,同时颗粒污泥密实度、沉降性能及稳定性提高,污泥容积指数(SVI)为23. 49 m L·g~(-1).调整曝气策略为低/高曝气后,系统脱氮除磷性能变差,TN和TP去除率均降至最低,分别为51. 26%和58. 32%,但此时系统硝化性能最佳,氨氧化速率和硝酸盐生成速率均达到整个运行过程中的最大值,分别为14. 92 mg·(g·h)-1和7. 50 mg·(g·h)-1,同时颗粒污泥中丝状菌大量繁殖、结构松散、沉降性及稳定性均变差,SVI升至40. 76 m L·g~(-1).故采取高/低阶梯曝气策略有利于AGS系统高效脱氮除磷及提高稳定性.  相似文献   

13.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)~(-1).由0. 125 L·(min·L)~(-1)逐渐降低至0. 025 L·(min·L)~(-1)]和好氧时间(由3 h逐渐延长至6 h),考察了SPNDPR系统的深度脱氮除磷性能.结果表明,当曝气量为0. 025 L·(min·L)~(-1)、好氧时间为6 h时,SPNDPR系统出水NH_4~+-N、NO_2~--N、NO_3~--N和PO_4~(3-)-P浓度分别为0、8. 62、0. 06和0. 03 mg·L~(-1);出水TN浓度约为9. 22 mg·L~(-1),TN去除率高达87. 08%.当曝气量分别由0. 125 L·(min·L)~(-1)降至0. 100 L·(min·L)~(-1)和由0. 100L·(min·L)~(-1)降至0. 075 L·(min·L)~(-1)时,系统硝化速率均能恢复并稳定维持在0. 16 mg·(L·min)~(-1)左右.但曝气量继续降至0. 050 L·(min·L)~(-1)和0. 025 L·(min·L)~(-1)后,硝化速率分别降至0. 09 mg·(L·min)~(-1)和0. 06 mg·(L·min)~(-1)左右.随着曝气量的降低[由0. 125 L·(min·L)~(-1)依次降至0. 100、0. 075、0. 050、0. 025 L·(min·L)~(-1)]和好氧时间的延长(由3 h延长至6h),SPND脱氮性能逐渐增强,SND率由19. 57%升高至72. 11%,TN去除率逐渐升高(由62. 82%升高至87. 08%).降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷.  相似文献   

14.
对菌株YB3进行了16S rRNA基因序列进化分析,并分别以NH_4Cl、NaNO_2、NaNO_3、尿素和蛋白胨为单一氮源,配制了5种低氮源浓度培养基,研究YB3在与养殖水体相近营养水平条件下的生长与氨氮去除特性.结果显示,菌株YB3属于蜡样芽孢杆菌(Bacullis cereus),在5种培养基中均能够生长,菌悬液(吸光度OD600为1.0)接种量为1.0%(v/v)时,OD600由0.010增长到0.100~0.117.在NH_4Cl培养基中,YB3的氨氮去除速率为1.23 mg·L~(-1)·d~(-1),去除率为93.5%.在尿素、蛋白胨等有机氮源培养基中,YB3将首先导致氨氮的积累,累积倍数分别为51.69和3.38,之后开始去除,去除速率为1.56和0.29 mg·L~(-1)·d~(-1),去除率为93.7%和26.8%.结果也表明,提高YB3接种量至8.0%(v/v),可以使蛋白胨培养基氨氮累积倍数下降至2.02,去除速率提高至1.07 mg·L~(-1)·d~(-1),去除率最终达到98.4%.NaNO_2和NaNO_3培养基中均未检测到氨氮,而NH_4Cl、尿素和蛋白胨培养基中也未检测到NO_2~--N和NO_3~--N,表明YB3的硝化、亚硝化和反硝化作用均不强烈,去除氨氮的同时将不会造成NO_2~--N和NO_3~--N等的大量积累.本文为菌株YB3在养殖水体调控与净化中的应用研究提供了实验基础和理论支持.  相似文献   

15.
同步脱氮除磷颗粒污泥硝化反硝化特性试验研究   总被引:4,自引:4,他引:0  
在厌氧/好氧交替运行的SBR反应器中,以成熟的脱氮除磷颗粒污泥为研究对象,对其硝化及反硝化特性进行研究.结果表明,静态试验中颗粒污泥的最大硝化速率为14.13 mg·(g·h)-1,最大反硝化速率为34.89 mg·(g·h)-1,最大缺氧吸磷反硝化速率为13.11 mg·(g·h)-1,污泥具有较好的硝化、反硝化性能;反应器中污泥最大硝化速率为4.60 mg·(g·h)-1,最大反硝化速率为1.43 mg·(g·h)-1;通过N的物料平衡得到,同步硝化反硝化反应去除N约为232.5 mg·d-1,占N去除总量的54.3%;另外,颗粒污泥对P和N的去除率分别在95%和90%左右,反应器具有较好的同步脱氮除磷效果.  相似文献   

16.
同步硝化反硝化耦合除磷工艺的快速启动及其运行特征   总被引:4,自引:4,他引:0  
冷璐  信欣  鲁航  唐雅男  万利华  郭俊元  程庆锋 《环境科学》2015,36(11):4180-4188
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-NNO-2-NNO-3-N;对TP的去除率为NO-3-NNO-2-NNH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.  相似文献   

17.
人工湿地在处理低C/N污水时存在碳源缺乏而严重限制反硝化进行的问题.为了补充反硝化需要的碳源,选择了玉米芯和稻草秸秆作为外加碳源引入湿地系统,对比两种碳源对湿地脱氮的强化效果.结果表明,通过11 d的纯水浸提释放实验发现,碳素累积释放量:稻草秸秆[(145.17±9.44) mg·g-1]>玉米芯[(57.41±5.04) mg·g-1];氮素累积释放量:稻草秸秆[(2.31±0.09) mg·g-1]>玉米芯[(0.66±0.08) mg·g-1].在观测的时间内,玉米芯和稻草秸秆累积释放碳氮比平均值分别为94.78和63.64.相比于稻草秸秆,玉米芯更适合作为外加碳源.在为期58 d的潜流人工湿地实验中,发现除了第8~12 d,添加玉米芯和稻草秸秆人工湿地出水中ρ(COD)超过50 mg·L-1外,其它时间都低于50 mg·L-1.在观测期间,添加玉米芯人工湿地的NO3--N去除率为93%~99%,具有良好的反硝化性能.而添加稻草秸秆人工湿地在运行后期NO3--N去除率最低只有76.8%,反硝化速率明显下降.对照组NO3--N去除率只有76.2%~77.7%,出现了明显碳源不足的现象.碳源不足还造成了NO2--N的蓄积.添加稻草秸秆和对照组人工湿地中NO2--N的出水质量浓度分别是玉米芯人工湿地的2.5~6倍和6~26倍.与添加稻草秸秆比,添加玉米芯可以使人工湿地中NO2--N出水质量浓度得到更显著地降低(P<0.05).玉米芯、稻草秸秆和对照组人工湿地TN去除率分别为83.75%~93.49%、76.59%~78.85%和67.85%~72.56%,三者之间存在显著性差异(P<0.01).最后,通过对玉米芯进行了稀碱加热预处理,使玉米芯的碳素累积释放量提高到(93.73±17.49) mg·g-1,累积释放的碳氮比提高至175.8,进一步提高了玉米芯的释碳性能,表现为更合适的外加碳源.  相似文献   

18.
利用微生物光电化学池(MPEC)去除污染物是一种经济高效环保的方法.本实验在制备获得聚苯胺/二氧化钛纳米管阵列(PANI/TiO_2-NTs)复合光电极的基础上,构建了由PANI/TiO_2-NTs光阳极和生物阴极组成的MPEC系统,并对其去除硝酸盐氮(NO~-_3-N)的性能进行研究.结果表明,PANI负载时间为80 s时,PANI/TiO_2-NTs电极光电性能最佳,相比于TiO_2-NTs电极光电流密度增大约一倍,PANI的修饰有效提高了光能利用率.构建的MPEC系统能在无外加电压的条件下利用光能驱动实现自养反硝化脱氮,NO~-_3-N的生物降解符合准一级反应动力学方程.光响应电流密度越大,系统反硝化脱氮性能越好,NO~-_3-N初始浓度为25 mg·L~(-1)时,当光响应电流密度从0.17 mA·cm~(-2)增加至0.67 mA·cm~(-2),平均反硝化速率从0.83 mg·(L·h)~(-1)增大到2.83 mg·(L·h)~(-1).对生物阴极微生物膜进行了高通量测序,发现Pseudomonas所占比例最大(27.37%)为优势菌属.分析认为PANI/TiO_2-NTs光阳极产生的光生电子通过外电路传递到阴极,Pseudomonas、Alishewanella和Flavobacterium等具有自养反硝化能力和电化学活性的微生物可直接利用电极上的电子作为唯一的电子供体进行自养反硝化脱氮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号