首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
目前国内外仅对家具生产中涂装环节VOCs的来源进行分析,且主要关注的是家具制造完成之后释放的VOCs及其对室内空气的影响,因此本文对完整家具制造过程中VOCs的来源进行探究,并引入蒙特卡罗模拟方法,运用改进的概率风险评估模型,对家具制造过程中贴皮、喷底漆、喷面漆、清洗、喷胶、粘棉、巡检等工序9个工位的工人进行致癌和非致癌健康风险评价,并筛选出对健康风险影响较大的暴露参数.结果表明,喷底漆、喷面漆工序使用的各类油漆、稀释剂和固化剂会产生苯、甲苯、二甲苯、苯乙烯、丁酮、环己酮、乙酸丁酯、乙酸乙酯等VOCs,贴皮工序、喷胶工序、粘棉工序使用的胶水类化学原料会产生二氯甲烷和乙酸乙酯,清洗工序用到的脱漆剂会产生二氯甲烷;暴露于苯和二氯甲烷的各工位致癌风险值均超过10~(-6),除暴露于苯的擦色、喷底漆和巡检工位外,其它各工位超过10~(-6)的概率皆大于95%,喷面漆工人的苯致癌风险最大,为3.07×10~(-6)±1.73×10~(-6),贴皮工人的二氯甲烷致癌风险最大,为5.14×10~(-6)±2.70×10~(-6),另外,各工位中只有喷面漆工人的非致癌风险大于1;暴露持续时间(ED)、致癌物的浓度(C)、呼吸速率(InhR)、暴露时间(ET)、暴露频率(EF)是对致癌风险影响较大的参数,体重(BW)对致癌风险具有负敏感度.除浓度外,对非致癌风险结果影响较大的暴露参数依次为:暴露持续时间(ED)、暴露时间(ET)、暴露频率(EF).  相似文献   

2.
为了解我国炼油厂装置区BTEX(苯、甲苯、乙苯、间/对二甲苯、邻二甲苯)排放特征及其潜在的健康风险,于2015年11月采集了珠江三角洲某大型炼油厂装置区排放的苯系物,使用预浓缩-GC-MS方法对其进行检测,并采用美国EPA人体暴露风险评价模型对其潜在的健康风险进行评估.结果表明,常减压蒸馏装置(AVDU)、催化裂化装置(CCU)、MTBE装置、连续重整装置(CRU)、芳烃联合装置(ACU)、延迟焦化装置(DCU)排放的苯系物浓度分别高达(239.5±159.5)、(149.9±36)、(313.8±373.8)、(136.3±12.8)、(103.5±92)和(116.9±102.8)μg/m~3.健康风险评价结果显示,各装置区BTEX经吸入途径的非致癌风险数量级为1.0×10~(-3)~1.0×10~(-1).经皮肤暴露的非致癌风险数量级为1.0×10~(-9)~1.0×10~(-7),6大装置的BTEX非致癌风险指数均1,不会对人体造成明显伤害.各装置区BTEX经吸入途径的致癌风险数量级为1.0×10-6~1.0×10-5,经皮肤暴露的非致癌风险数量级为1.0×10~(-12)~1.0×10~(-11).6大装置区的苯、乙苯致癌风险指数均超过EPA人体可接受致癌风险值(1.0×10~(-6)).皮肤暴露途径引起的健康风险与吸入暴露有相同的趋势,但风险值远小于吸入暴露的风险值,占总风险值的比例不足0.001%,说明该炼油厂引起人体健康风险的主要途径为吸入暴露.  相似文献   

3.
本研究于2018年夏季和冬季,在南京使用吸附浓缩在线监测系统(AC-GCMS 1000)对大气中的挥发性有机化合物(VOCs)进行测量,估算其所造成的健康风险并解析VOCs所造成致癌与非致癌风险的污染来源.结果表明,采样期间南京市冬季φ(总VOCs)为105.7×10-9,为夏季(34.5×10-9)的3.1倍,以烷烃为主要物种.在健康风险方面,冬季毒性VOCs所造成的非致癌风险及致癌风险值分别为9.43和1.0×10-4,是夏季非致癌(5.58)与致癌风险(2.69×10-5)的1.7和3.8倍,而丙烯醛和1,2-二氯乙烷是非致癌与致癌风险的主要物种.最后,利用PMF模型解析5个VOCs的污染来源,分别是有机涂料溶剂源、生物质燃烧源、车辆排放源、石油化工源和溶剂源2.车辆排放源是造成致癌风险的最大来源(夏季28.2%和冬季48.0%).因此,建议有针对性地控制毒性VOCs及车辆尾气的排放,以减小可能对公众健康产生的危害.  相似文献   

4.
郑州市碳素行业无组织VOCs排放特征分析及健康风险评价   总被引:4,自引:4,他引:0  
选择郑州市3家典型碳素企业,研究了不同功能区的挥发性有机污染物(volatile organic compounds,VOCs)的排放特征及其臭氧生成潜势(ozone formation potential,OFP),并利用美国环保署(EPA)的健康风险评价模型对碳素行业排放的VOCs的健康风险进行了初步评价.结果表明,3家企业生产区VOCs质量浓度在89. 77~964. 60μg·m~(-3)之间,管理区在51. 46~121. 59μg·m~(-3)之间,萘和二硫化碳是碳素企业厂区内浓度最高的污染物;生产区VOCs的臭氧生成潜势在75. 42~1 416. 73μg·m~(-3)之间,管理区在65. 32~202. 42μg·m~(-3)之间,主要来自于芳香烃和烯烃的贡献.生产区VOCs致癌健康风险(Risk)为3. 5×10~(-5)~2. 8×10~(-3),管理区为2. 0×10~(-5)~9. 4×10~(-5),高于EPA推荐的最大可接受水平(10~(-6));生产区VOCs非致癌健康风险危害指数(hazard index,HI)为3. 2~1. 4×10~2,管理区为4. 3×10~(-1)~3. 8,除企业甲的管理区外均大于1,可能会对暴露人群的健康造成致癌和非致癌危害.  相似文献   

5.
在南京富贵山隧道开展机动车排放的挥发性有机物(VOCs)对环境及人群健康的影响研究,对VOCs浓度水平与变化特征、组成与化学反应活性进行了分析,并通过美国环境保护局(US EPA)的健康风险评价模型对VOCs的健康风险进行了评价.结果表明,隧道进口与出口空气中共检测出93种物质,隧道进口处样品的总VOCs浓度(87.28±7.08)μg/m3;隧道出口处总VOCs浓度(225.63±59.19)μg/m3.隧道出口检测到的烷烃和芳香烃这两类物质浓度比进口浓度高.隧道进口与出口处的VOCs总臭氧生成潜势为101.48μg O3/m3和402.01μg O3/m3.健康风险评价结果表明,隧道进口处14种主要VOCs的非致癌风险危害商值(HQ)在8.07×10-5~2.66×10-1之间,而在隧道出口处的HQ范围为3.18×10-4~2.92×10-1.隧道进口与出口处的VOCs的非致癌风险危险指数(HI)均小于1,非致癌风险值在安全范围之内.但1,3-丁二烯、氯仿、四氯化碳、苯和1,1,2-三氯乙烷的致癌风险较大,对人体健康具有明显的影响.  相似文献   

6.
轿车内有害挥发物来源及其健康风险评价   总被引:1,自引:0,他引:1  
分析了轿车内有害挥发物来源,通过对轿车内饰用品实施样品监测,提出了主要有害挥发物种类;基于美国EPA健康风险评估模型,以及国内相关空气标准中有害挥发物限量要求,对9种有害挥发物的致癌风险值和非致癌危害指数进行了风险评价。结果表明:轿车内空气中苯和甲醛对人致癌风险为低风险,二甲苯、丙烯醛对人存在非致癌危害。建议国内车内空气标准中考虑有害挥发物总量水平。  相似文献   

7.
基于蒙特卡罗模拟的土壤环境健康风险评价:以PAHs为例   总被引:8,自引:5,他引:3  
佟瑞鹏  杨校毅 《环境科学》2017,38(6):2522-2529
为获得更为合理的健康风险评价结果,并辨识对健康风险影响最大的因素,基于蒙特卡罗随机模拟,运用概率风险评价模型,定量评估了中国上海某居民区土壤中16种PAHs对居民的健康风险水平,并对各参数进行敏感性分析.结果表明,土壤中PAHs造成的健康风险服从对数正态分布,总的致癌风险为3.43×10~(-5)±2.63×10~(-5),最小值为8.10×10~(-7),最大值为2.39×10~(-4),超过10-6的概率为95%,超过10~(-5)的概率为75%,超过10~(-4)的概率小于5%;总的危害商为4.74×10~(-2)±3.42×10~(-2),不超过1,风险较小;在7种具有致癌效应的PAHs中,苯并(a)芘、二苯并(a,h)蒽和苯并(a)蒽是总致癌风险的主要贡献物质,贡献率分别占60.41%、26.84%和6.56%;3种暴露途径中,经口途径是造成致癌风险的主要途径,贡献率为73.22%;对于总致癌风险,人体暴露参数中每日土壤摄入量、暴露周期、暴露皮肤面积敏感度较大,分别为58.35%、50.21%和20.51%;体重具有负敏感性,敏感度为-11.66%.  相似文献   

8.
李嫣  王浙明  宋爽  徐志荣  许明珠  徐威力 《环境科学》2014,35(10):3663-3668
以浙江台州6家典型化学合成类制药企业为代表,对其排放工艺废气中的18项挥发性有机物(VOCs)特征污染物(如甲苯、甲醛、二氯甲烷等)进行监测和分析,并采用臭氧产生潜力(OFP)和健康风险评价指标对VOCs所产生的环境与健康危害进行初步的评价.结果表明,化学合成类制药企业排放的总VOCs浓度为14.9~308.6 mg·m-3,其产生环境危害的OFP值为3.1~315.1 mg·m-3,主要贡献物质为甲苯、四氢呋喃、乙酸乙酯等6种物质,存在较大的潜在环境危害.另外,健康危害中的非致癌风险指数和总致癌风险指数介于9.48×10-7~4.98×10-4a-1和3.17×10-5~6.33×10-3之间,主要是苯、甲醛和二氯甲烷这3种致癌物.  相似文献   

9.
厦门不同功能区VOCs的污染特征及健康风险评价   总被引:8,自引:0,他引:8  
为了解厦门市不同功能区大气中挥发性有机物(VOCs)的污染特征和健康风险,于2014年3—8月在厦门市开展大气样品的采集,利用预浓缩系统和气相色谱质谱联用技术进行VOCs含量的定量分析,并采用美国EPA人体暴露风险评价方法对VOCs进行人群健康风险的初步评价.结果表明,各功能区VOCs的平均质量浓度差异较明显,表现为工业区(120.88μg·m-3)交通区(104.41μg·m-3)开发区(84.06μg·m-3)港口区(80.78μg·m-3)居民区(58.75μg·m-3)背景区(41.46μg·m-3).背景区、居民区、交通区、开发区和港口区各类VOCs浓度均表现为烷烃芳香烃烯烃,工业区则表现为芳香烃烷烃烯烃.除背景区外各功能区VOCs浓度在6月最低,而除工业区外各功能区浓度在8月最高.温度和风等气象因素是导致VOCs浓度变化的重要原因.苯、甲苯、乙苯、间,对二甲苯和邻二甲苯(BTEX)在各功能区总芳香烃中所占的比例为65.20%~78.73%.各功能区BTEX的非致癌风险均表现为甲苯乙苯邻二甲苯间,对二甲苯苯,在9.73×10-4~1.33×10-1之间,均在安全范围内,而苯的致癌风险在1.23×10-5~3.08×10-5之间,超出安全范围,存在较大的致癌风险.  相似文献   

10.
典型酿造业厂界无组织排放VOCs污染特征与风险评价   总被引:3,自引:2,他引:1  
为探明酿造企业厂界无组织排放VOCs的浓度特征、恶臭污染及健康风险,采用便携式气相色谱-质谱仪对典型酿造企业醋厂和酒厂厂界无组织排放VOCs进行监测,分析研究其VOCs的浓度水平和组成特征,采用阈稀释倍数和感官测定法对VOCs进行恶臭分析,并进行了健康风险评价.结果表明,醋厂和酒厂厂界无组织排放VOCs的总浓度分别为0.968 mg·m~(-3)和0.293 mg·m~(-3).醋厂排放的VOCs中乙酸乙酯和乙酸含量较高,分别占总VOCs的76.3%和13.5%.酒厂排放的VOCs中以乙醇和己酸乙酯为主,分别占总VOCs的56.3%和30.4%.含氧VOCs是酿造企业污染源排放的主要组分.两厂总恶臭指数均大于1,表明其无组织VOCs排放对大气环境存在恶臭污染,且其臭气浓度均超过恶臭污染物厂界标准限值.醋厂和酒厂VOCs致癌风险指数分别为2.45×10~(-6)和5.25×10~(-6),超过了EPA致癌风险值(1.0×10~(-6)),但未超过OSHA致癌风险值(1.0×10~(-3))_及ICRP最大可接受的风险值(5.0×10~(-5)).  相似文献   

11.
China and India together have more than one third of the world population and are two emerging economic giants of the developing world now experiencing rapid economic growth, urbanization, and motorization. The urban transportation sector is a major source of carbon dioxide (CO2) emissions in China and India. The goal of this study is to analyze the characteristics and factors of CO2 emissions produced by commuters in Chinese and Indian cities and thus to identify strategies for reducing transportation CO2 emissions and mitigating global climate change. Xi’an in China and Bangalore in India were chosen as two case study cities for their representativeness of major cities in China and India. The trends of CO2 emissions produced by major traffic modes (electric motors, buses, and cars) in major cities of China and India were predicted and analyzed. The spatial distributions of CO2 emissions produced by commuters in both cities were assessed using spatial analysis module in ArcGIS (Geographic Information System) software. Tobit models were then developed to investigate the impact factors of the emissions. The study has several findings. Firstly, in both cities, the increase of vehicle occupancy could reduce commuting CO2 emissions by 20 to 50 % or conversely, if vehicle occupancy reduces, an increase by 33.33 to 66.67 %. It is estimated that, with the current increasing speed of CO2 emissions in Xi’an, the total CO2 emissions from electric motors, buses, and cars in major cities of China and India will be increased from 135?×?106 t in 2012 to 961?×?106 t in 2030, accounting for 0.37 to 2.67 % of the total global CO2 emissions of 2013, which is significant for global climate change. Secondly, households and individuals in the outer areas of both cities produce higher emissions than those in the inner areas. Thirdly, the lower emissions in Xi’an are due to the higher density and more compact urban pattern, shorter commuting distances, higher transit shares, and more clean energy vehicles. The more dispersed and extensive urban sprawl and the prevalence of two-wheeler motorbikes (two-wheeler motorbike is abbreviated as “two-wheeler” in the following sections) fueled by gasoline cause higher emissions in Bangalore. Fourthly, car availability, higher household income, living outside the 2nd or Outer Ring Road, distance from the bus stop, and working in the foreign companies in Bangalore are significant and positive factors of commuting CO2 emissions. Fifthly, “70-20” and “50-20” (this means that generally, 20 % of commuters and households produce 70 % of total emissions in Xi’an and 20 % of commuters and households produce 50 % of total emissions in Bangalore) emission patterns exist in Xi’an and Bangalore, respectively. Several strategies have been proposed to reduce urban CO2 emissions produced by commuters and further to mitigate global climate change. Firstly, in the early stage of fast urbanization, enough monetary and land investment should be ensured to develop rail transit or rapid bus routes from outer areas to inner areas in the cities to avoid high dependency on cars, thus to implement the transit-oriented development (TOD), which is the key for Chinese and Indian cities to mitigate the impact on global climate change caused by CO2 emissions. Secondly, in Bangalore, it is necessary to improve public transit service and increase the bus stop coverage combined with car demand controls along the ring roads, in the outer areas, and in the industry areas where Indian foreign companies and the governments are located. Thirdly, Indian should put more efforts to provide alternative cleaner transport modes while China should put more efforts to reduce CO2 emissions from high emitters.  相似文献   

12.
挥发性有机化合物(VOCs)是臭氧和颗粒物等的重要前体物,对空气质量的影响尤为显著.为研究连云港市VOCs的组分特征和来源,选择4个国控点开展春、夏和秋季典型日的VOCs采样和分析,计算VOCs不同组分对臭氧生成的影响,利用正交矩阵因子分解法(PMF)解析VOCs的来源.结果表明,春季VOCs浓度为27.46×10~(-9)~40.52×10~(-9),夏季为45.79×10~(-9)~53.45×10~(-9),秋季为38.84×10~(-9)~46.66×10~(-9);含氧化合物的浓度占比为41%~48%,在各个季节均为最高,浓度水平较高的VOCs物种是丙酮、丙烯醛和丙醛等,异戊二烯的浓度在夏季较高;一般而言VOCs浓度09:00高于13:00,其中丙烯醛、乙烯和二氯甲烷的变化较大;含氧化合物的臭氧生成潜势(OFP)最高,其次是芳香烃和烯烃类,烷烃的OFP最小,OFP较高的VOCs物种是丙烯醛、丙烯和乙烯等;影响连云港市VOCs的来源主要有工业源(49%)、溶剂使用源(23%)、交通源(14%)、涂料使用源(10%)和天然源(4%).需重点关注连云港市VOCs中浓度水平和OFP均较高的含氧化合物,重点控制工业源对VOCs的影响.  相似文献   

13.
上海市某化工区夏季典型光化学过程VOCs特征及活性研究   总被引:3,自引:0,他引:3  
本研究基于夏季某化工区外5 km处观测点O_3及VOCs在线观测结果,分析了VOCs污染及光化学反应活性特征.结果显示,西南风向的VOCs平均体积分数为63.9×10~(-9)±28.6×10~(-9),高于其他风向42%(45.0×10~(-9)±28.0×10~(-9)),不同主导风向下的VOCs特征具有一定的相似性,均以烯烃、卤代烃和烷烃为主要组分,说明化工园区局地排放和累积对观测点VOCs影响较大.主要VOCs物种的日变化都具有夜间体积分数累积增多,白天逐步降低的特征;但是异戊二烯呈现日变化较小的特征,显示其受到人为源和天然源的双重影响.西南风向的臭氧生成潜势(Ozone Formation Potential,OFP)为242.1×10~(-9),远高于其他风向的OFP(174.1×10~(-9)),而平均MIR(Maximum Increment Reactivity)则较为接近;烯烃在VOCs总OFP中的贡献比例均在70%以上,其次是芳香烃.使用乙苯和间/对二甲苯的比值来表征气团光化学反应进程,计算得到观测点西南风向VOCs消耗量为(51.7×10~(-9)±38.8×10~(-9)),烯烃和卤代烃是最主要VOCs消耗组分.  相似文献   

14.
在用汽油和柴油车排放颗粒物的粒径分布特征实测   总被引:1,自引:1,他引:0  
分别选取国3~国5轻型汽油车9辆和重型柴油车15辆采用实验室底盘测功机和全流稀释定容采样系统(CVS)开展了汽柴油车尾气颗粒物排放因子实测和粒径分布比较,分析并比较了行驶工况和排放控制水平对汽柴油车尾气颗粒物排放因子和粒径分布的影响.结果表明,轻型汽油车和重型柴油车的颗粒数量单位燃料平均排放因子分别为(4.1±4.0)×10~(14) kg~(-1)和(5.7±4.3)×10~(15) kg~(-1),重型柴油车颗粒数量排放因子是轻型汽油车的(14±7)倍.轻型汽油车超高速工况下颗粒物数量排放因子显著高于其他工况,颗粒数排放因子达到(5.1±5.0)×10~(13) km~(-1),分别是低速、中速和中速工况的11.7、 14.1和7.3倍,重型柴油车高速工况颗粒数排放因子分别是低速和中速工况的2.5倍和1.4倍,且增长的颗粒物主要为核模态颗粒.国3~国5排放控制水平下汽油车颗粒物数量排放因子分别为(2.7±1.7)×10~(13)、(2.6±1.3)×10~(13)和(1.6±1.2)×10~(13) km~(-1),重型柴油车颗粒物数量排放因子分别为(2.2±1.2)×10~(15)、 2.0×10~(15)和(7.1±2.1)×10~(14) km~(-1),随着排放控制水平的提升,轻型汽油车和重型柴油车颗粒数排放控制总体上均呈现较好地下降趋势,但柴油车排放粒径110nm以上颗粒物随排放标准的提升未有改善,虽然柴油车粒径110 nm以上的数量排放因子相对较低,但其对环境的危害不容忽视,应当引起必要的关注.  相似文献   

15.
黄禹  陈曦  王迎红  刘子锐  唐贵谦  李杏茹 《环境科学》2021,42(10):4602-4610
为了解华北区域光化学污染特征,于2018年5月至2019年4月在石家庄和兴隆地区利用2,4-二硝基苯肼(DNPH)对空气中的羰基化合物进行采样,并利用高效液相色谱对采集样品进行分析,以了解该区域羰基化合物的组成、体积分数、来源、·OH损耗速率和臭氧生成潜势.本研究共测定了13种含羰基的挥发性有机物,其中体积分数最高的3种物质为丙酮、甲醛和乙醛[石家庄地区:(6.46±5.25)×10-9、(3.76±2.29)×10-9和(2.65±1.74)×10-9;兴隆地区:(1.85±1.27)×10-9、(1.29±1.02)×10-9和(0.72±0.48)×10-9];C1/C2和C2/C3值表明石家庄地区工业化水平较高,受机动车尾气和化石燃料燃烧等人为排放影响较明显;兴隆地区采样点处于背景区域,受自然源影响较大;石家庄地区对L·OH贡献最大的3种物质分别为乙醛(1.77 s-1)、甲醛(1.57 s-1)和丁醛(0.42 s-1);兴隆地区对L·OH贡献最大的3种物质为分别为甲醛(0.53 s-1)、乙醛(0.47 s-1)和丁醛(0.12 s-1);对O3生成贡献最大的羰基化合物物种为甲醛和乙醛[石家庄地区:34.61×10-9(以O3计,下同)和16.73×10-9;兴隆地区:11.77×10-9和4.47×10-9],且甲醛的最大臭氧生成潜势估算(OFP)远高于乙醛.  相似文献   

16.
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CO在线观测系统,于2010年9月~2012年2月在浙江省临安大气本底站对大气CO进行了在线观测.结果表明临安站四季CO日变化明显受人为活动影响,分别在每日07:00~10:00和19:00~20:00出现峰值,夏季CO日平均浓度和振幅均最低,分别为314.3×10-9±7.6×10-9(摩尔分数,下同)和50.1×10-9±47.9×10-9.该站全年大气CO浓度呈现冬春季高、夏季低的趋势,与北半球瑞士Jungfraujoch站、青海瓦里关等站基本一致,但平均浓度明显高于其他国际站点,全年CO月均值振幅约为286.8×10-9±19.2×10-9.后向轨迹聚类和地面风结果分析表明,临安站非本底CO浓度主要来自于N-NNE-ENE扇区内城市及工业等人为排放所引起.春、夏和冬季最大的浓度抬升均出现在ENE风向,冬季抬升值最大,约为106.3×10-9±58.0×10-9.  相似文献   

17.
为探讨东莞典型工业区夏季大气挥发性有机物(VOCs)污染特征及来源,于2020年夏季在厚街镇对大气环境中56种VOCs开展了在线观测,并同步收集了臭氧(O3)、氮氧化物(NOx)和一氧化碳(CO)等气体污染物浓度和气象因子等资料,在此基础上分析了VOCs总体积分数和主要物种体积分数特征,进一步估算了主要VOCs物种对臭氧生成潜势的贡献和不同臭氧浓度下VOCs的主要污染源贡献率.结果表明,观测期间56种VOCs的体积分数平均值为53.1×10-9,其中φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别为24.7×10-9、23.7×10-9、3.9×10-9和0.7×10-9.与非臭氧污染期间相比,臭氧污染期间φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别上升约10%、43%、38%和98%.无论是臭氧污染还是非臭氧污染期间,芳香烃对臭氧生成潜势的贡献率均最大,其次为烷烃、烯烃和炔烃.整个夏季观测期间,溶剂源、液化石油气泄漏、化石燃料燃烧源和油气挥发源对VOCs的贡献率分别为60%±20%、16%±11%、15%±11%和9%±6%;臭氧污染期间,溶剂源的贡献率下降到44%,而液化石油气泄漏和油气挥发源的贡献率分别上升到21%和16%.  相似文献   

18.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10~(-9),C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10~(-9)]风景区[(21. 7±4. 4)×10~(-9)]交通居民混合区[(20. 8±7. 2)×10~(-9)].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10~(-9)),夏季风景区VOCs浓度最高(21. 5×10~(-9)).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著高于风景区和交通居民混合区.通过T/B(甲苯/苯)探讨VOCs的来源发现,机动车和溶剂使用是城区大气VOCs的主要来源.功能区的OFP排序为工业区交通居民混合区风景区,烯烃对OFP的贡献最高,其次为芳香烃.  相似文献   

19.
巢湖完全氨氧化细菌的丰度、群落结构及其影响因素研究   总被引:1,自引:0,他引:1  
完全氨氧化过程(complete ammonia oxidation, comammox)的发现使研究者们对硝化作用和氮循环都有了新的认识.本研究选取巢湖冬夏季表层(0~10 cm)沉积物样品,运用高通量测序、实时定量PCR等分子生物学技术对comammox细菌的丰度和群落结构进行研究.结果表明:基于amoA基因的comammox细菌的丰度为(5.20±0.72)×106~(4.06±1.23)×107 copies·g-1;氨氧化古菌的丰度为(5.39±1.01)×105~(1.60±0.18)×107 copies·g-1;氨氧化细菌的丰度为(6.16±1.57)×105~(4.30±0.19)×106 copies·g-1.comammox细菌的绝对丰度显著高于氨氧化古菌和氨氧化细菌.多样性分析表明冬季巢湖表层沉积物中的comammox细菌的物种多样性大于夏季.其中Candidatus Nitrospira nitrificans、Candidatus Nitrospira nitrosaCandidatus Nitrospira inopinata的相对丰度最高占比分别为78.72%、49.80%和6.28%,且夏季样点中Candidatus Nitrospira inopinata的相对丰度显著高于冬季样点.主坐标分析(Principle Coordinate Analysis, PcoA)结果表明,comammox细菌的群落结构具有明显的时间异质性.理化因子中,NH4+和NO3-与comammox细菌的丰度呈负相关关系.本研究在一定程度上揭示了comammox细菌的丰度、群落组成、多样性及其与理化因子的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号