首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
黄土高原降水的季节性指标及其与作物水分亏缺的关系   总被引:3,自引:0,他引:3  
黄土高原位于我国东部季风区与西部非季风区之过渡地区,属弱季风区,降水相对较集中。为分析本区降水的时空分布,文中采用矢量合成方法计算了黄土高原296个站的降水季节性指标值及降水季节,前者变化于0.44—0.64 之间,后者集中于7月中、下旬至8月上旬,自东南向西北推迟。降水的季节性指标与降水季节直接影响到作物水分的亏缺量,全区小麦严重缺水100—200mm 不等,玉米缺水30—50mm,而谷子生育期中水分需求基本可以得到满足。最后,讨论了本区降水与土壤水分含量的关系,指出本区水分不足,认为有的作者提出的该区尚有80%的水分潜力没有得到发挥的见解是错误的。  相似文献   

2.
气候变化对中国黄淮海农业区小麦生产影响模拟研究   总被引:21,自引:0,他引:21  
研究首先利用1980-2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个站点在IPCC SR ES A 2和B2两个气候情景下雨养和灌溉小麦产量和水分利用的变化趋势。得到如下结论:在不考虑CO2直接肥效的情况下,黄淮海农业区雨养小麦全面减产,空间分布特点是西部减产幅度大,东部减产幅度小;在充分灌溉的情况下,灌溉小麦产量维持了现有水平,但灌溉水量增加。因此,在未来该地区水资源短缺的情况下,如何合理利用有限的水资源将成为黄淮海农业区主要面临的问题。在考虑CO2直接肥效的情况下,雨养和灌溉小麦产量都全面增产,雨养小麦的增产幅度明显偏高,灌溉小麦约增产10%~30%,但CO 2的肥效能否充分实现还需要进一步研究证明。  相似文献   

3.
围绕本区旱作农田生产现实,运用“肥力梯度”田区研究,和联合国FAO推荐的概算等方法,所展现出各气候类型区主要作物耗水系数,和降水应能实现的生产潜力,虽低于灌溉农田的热量生产潜力,却也令人鼓舞。研究揭示,现阶段高原旱作农田降水生产潜力受制于地力水平,即在一定范围内,地力水平与耗水系数、作物产量密切相关。研究指出:“干旱固然是高原农业生产经常威胁,然而地力不足,乃是导致水分无谓耗损的更为直接原因”。多种途径,有所侧重地培肥地力,是使降水的潜在生产力充分化为现实生产力的重要方面。  相似文献   

4.
农业水分利用率及其对环境和管理活动的响应   总被引:15,自引:1,他引:14  
全球变化引起全球温度升高,降水格局发生变化,使淡水资源更加匮乏。农业是占据首位的用水大户。如何节约农用水,提高农业水分利用率(WUE)是节约淡水资源,促进水资源的可持续利用,加快干旱和半干旱地区社会经济发展的关键。农业水分利用效率的概念及其表达式根据不同尺度、应用目的等而不同。提高WUE主要有两种原则:减少地表径流和蒸发,以及提高作物的蒸腾效率。论文描绘了提高农业水分利用率的模式图,提出了今后应着重研究的方向。  相似文献   

5.
我国西双版纳夜雨资源的农业气候分析   总被引:4,自引:0,他引:4  
研究了西双版纳地区夜雨及雾雨的天气气候特征及时空分布规律,分析了夜雨、雾雨的形成机制及其农业气候意义。结果表明,本区降水呈夜雨与昼雨相均衡的状况,夜雨率达545%~577%,尤其是雾季和干热季可分别达714%、706%。夜雨形成多是山风环流造成的地形雨,雨强小,雨时长,因而对作物的有效性高。夜间雾雨则在作物生态环境中起着至关重要的作用,可部分缓解干旱季节作物需水的不足。因此,深入探讨夜雨和雾雨资源是制定有效防御干旱对策的重要依据。  相似文献   

6.
X37 20(刃014(X)黄土高原水土保持与水环境/徐学选(中科院水利部水土保持研究所)…//水土保持通报/中科院水利部水土保持研究所一1999,19(5)一44一48 环图S一48 通过分析黄土高原水环境背景特征、认为黄土高原雨水环境差;人工林草地土壤水分长期处在亏缺状态,高产农田、林草、坡地生产力受水分环境制约严重;径流水可利用程度低。生态环境的改善必须借助水土保持的生物、工程等措施,首先改善水环境。水土保持措施对在水环境的影响表现为:在地块尺度上,可以汇集雨水、增加人渗、满促作物、植物生长的水分需求平衡。但商耗水的林草地,水分亏…  相似文献   

7.
本文利用黄土高原208个气象台(站)的历年旬降水量与计算的旬潜在蒸发量之比(R/PE),经过10旬滑动平均计算,确定了湿润期(G)及变差系数(C)、播种雨开始期(S)及其标准差(δ)和干旱指数(A),同时还计算了湿润期内出现的干旬(D)、湿旬(W)及其标准差(β、α)。湿润期及其变量的研究,对合理安排农业生产具有重要意义。  相似文献   

8.
我国北方冬小麦生育期内干旱少雨,农业水资源紧缺,因此,由汛期降水形成的底墒,特别是土壤深层储藏的水分则成为小麦生长的重要水源之一。在中国气象局固城农业气象试验基地大型人工控制农田水分试验场,进行了提高底墒和土壤深层水分利用率,以肥促根觅水的旱作冬小麦田间试验。试验结果表明,施肥深度在20~40cm范围内,能明显促进冬小麦中、下层根系的生长发育,扩大作物觅取水分和养分的土壤空间,有效地吸收和利用储藏在土壤深层的水分,从而能充分发挥土壤水库的调控作用,提高小麦的产量和水分利用效率。  相似文献   

9.
基于1960—2017年黄土高原47个气象站逐日降水量数据,对黄土高原极端降水量、极端降水日数和极端降水强度的时空演化特征进行了分析。结果显示:(1)黄土高原极端降水时空分布存在明显异质性。极端降水事件在全年发生频率不高(13.2%—46.1%),但对年降水量贡献突出(50.4%—91.4%)。(2)1960—2017年黄土高原极端降水量和降水日数出现下降,但极端降水强度上升。在黄土高原干旱化的同时,极端降水在全年降水中的占比有升高趋势。作为黄土高原土壤侵蚀的主要驱动力,愈发增强的极端降水将会给该地区水土保持和地质灾害防治工作带来严峻挑战。(3)极端降水特征EOF分解第一模态反映了黄土高原极端降水的一致性变化,其空间分布特征可能受到了当地水汽条件及大气层结稳定度等大气动力效应的影响。第二模态反映了黄土高原极端降水的差异性变化,极端降水量和极端降水日数均大致以临夏—太原一线呈反相位变化,这种分布模式可能和地形因素密切相关。(4)黄土高原极端降水特征的年际变化受厄尔尼诺-南方涛动(ENSO)活动的显著影响,厄尔尼诺年极端降水量偏低、日数偏少,拉尼娜年反之。  相似文献   

10.
应用EPIC模型计算黄土塬区作物生产潜力的初步尝试   总被引:31,自引:1,他引:31  
黄土高原地区土壤侵蚀强烈,土地现实生产力水平低,研究该地区作物生产潜力可以为有效提高作物产量及合理进行农业生产规划提供依据。论文介绍了EPIC(侵蚀-生产力影响计算模型)的特点、组成部分及应用步骤,对部分作物参数进行了修订。以黄土塬区冬小麦和春玉米为例,对EPIC模型的适用性进行了分析和验证,表明EPIC在黄土高原地区作物生产潜力模拟研究中具有较好的适用性。结果显示,冬小麦产量模拟值与实测值之间多年平均误差为7.78%;春玉米多年平均误差为9.60%。冬小麦水分胁迫天数多年平均为9.9天,最少为1.7天(1993年),最多为23.1天(1995年);春玉米水分胁迫天数多年平均为13.4天,最少为1.1天(1993年),最多为44.2天(1995年),与各年作物生育期降水情况基本一致。此模型经修正后在正常年份模拟值较为精确,在干旱年份对作物、土壤等参数的修正方法需要进一步探讨。  相似文献   

11.
以苹果为主的黄土高原经济林果种植规模持续扩张,耗水量不断增多,潜在的水安全风险增大。量化苹果生产水足迹,讨论苹果生产扩张带来的水安全风险,对科学指导未来黄土高原苹果健康发展具有重要意义。本文基于ArcGIS和CROPWAT软件,选取2000—2019年黄土高原44个市(州),探究了苹果水足迹的时空分布规律及水安全风险。结果表明:2000—2019年,黄土高原苹果种植面积增长了1.3倍,产量增长了3.1倍,呈“北移西扩”的发展趋势;苹果绿水足迹占比的空间分布与降雨量基本一致,从东南向西北递减,蓝水足迹空间分布正好相反;苹果水足迹总量从74.42亿m3增长到108.04亿m3,占农业耗水量的比例由42.78%提升至65.63%,灰水足迹占比高达13.88%,黄土高原苹果生产面临严峻的水安全风险。因此,应适度控制黄土高原苹果种植规模的进一步扩张。本文可为评价黄土高原苹果种植规模扩张背后的水安全风险提供依据。  相似文献   

12.
研究土壤水分、生物多样性的空间变异性是认识陆地生态系统对降水变化的响应特征及适应机制的有效途径。论文利用黄土高原自东南向西北的天然降水梯度,采用样带研究方法对47个草地0~3 m土壤水分和物种多样性进行测定,系统分析了草地土壤水分和植物物种多样性在降水梯度上(250~550 mm)的空间分异及二者之间的权衡关系。结果表明:降水自东南向西北递减是控制黄土高原草地0~3 m土壤水分和物种多样性空间异质性的关键因素。随降雨减少,土壤水分呈线性递减趋势,其中浅层土壤水分(0~1 m)与年降水量相关系数最大。物种丰富度指数和物种多样性指数随降水减少呈显著的线性递减趋势,物种均匀度指数在降水梯度上没有明显变化。370 mm年均降水量是物种多样性和土壤水分权衡关系的转折点,转折点以上二者存在协同关系,即土壤水分和物种多样性沿降水梯度以相同速率变化。370 mm年均降水量以下,物种多样性和土壤水分的权衡增大,意味着维持物种多样性以消耗土壤水分为代价。  相似文献   

13.
关于黄土高原空间范围的讨论   总被引:3,自引:0,他引:3  
长期以来,黄土高原的空间范围缺乏明确的定论。争论的焦点反映出不同学者对自然地理现象空间分布过渡性的认识和处理的差异。本文从黄土、黄土分布区、黄土高原及其毗邻的黄土分布区、黄土高原、典型黄土地貌区等几个不同层次的概念出发,探讨了划分黄土高原的客观标准,并根据野外考察和航卫片判读确定了黄土高原的空间范围。  相似文献   

14.
明确黄土高原地区降水和气温变化对冬小麦田土壤水分和产量的影响,对探索适应气候变化的冬小麦田间管理措施具有重要的现实意义。论文在验证EPIC模型对冬小麦田土壤水分模拟精度的基础上,以历史气象数据为基础,设置TR1、TR2和TR3三个气候情景,采用作物模型模拟的方法,研究黄土高原冬小麦田土壤水分和冬小麦产量对降水和气温变化的响应。结果显示:1)1961—2010年黄土高原降水呈降低趋势,其年际间变化幅度和频率均有所增加。与1961—1970年相比,洛川、长武、运城和延安的年均降水量在2001—2010年间分别降低了18.1%、13.6%、18.8%和24.9%,其变差系数分别增加了0.029、0.087、0.02和0.057。1961—2010年黄土高原气温呈波动性增加趋势,其中日最低气温增加幅度大于日最高气温增加幅度。与1961—1970年相比,日最高气温在2001—2010年间增加了0.30~0.84 ℃,而日最低气温增加了1.00~1.55 ℃。2)EPIC模型能够较好地模拟黄土高原冬小麦田土壤水分动态变化规律,0~2.0 m土层土壤湿度观测值与模拟值间的相对均方根误差RRMSE值为6.0%~14.0%,R2和模型效率ME值分别为0.824和0.815。3)黄土高原地区降水的减少和最高气温的增加均不利于冬小麦生产,而最低气温的提高对冬小麦生产较为有利。洛川、长武、运城和延安冬小麦产量因年降水量的降低而分别减产了8.5%、7.6%、11.7%和12.3%;因日最高气温的升高分别减产了6.4%、6.8%、7.2%和-3.0%;因日最低气温的提高而分别增加了8.8%、10.2%、1.5%和12.0%。因此,为适应降水减少和日最低气温升高的趋势,黄土高原冬小麦生产区应适当调整冬小麦播期,研究并推广保水节水技术措施,充分利用气候变化对冬小麦生产的有利因素,克服不利因素,确保冬小麦的可持续生产。  相似文献   

15.
研究潜在蒸散对于深刻了解区域的生态环境问题及水文循环过程具有重要的理论与现实意义.该研究基于Penman-Monteith模型对1961—2019年黄土高原潜在蒸散的时空变化特征进行了分析,再结合土地利用数据探究了各植被类型潜在蒸散的差异及其影响因素.结果表明:①1961—2019年黄土高原区域呈暖干化趋势,其中平均最高温度、平均最低温度与平均温度均呈显著增加趋势;平均相对湿度、平均风速、日照时数均呈显著降低趋势;降水量非显著减少.②在空间分布格局上,黄土高原区域年均、生长季、春季、夏季和秋季潜在蒸散均呈南北高、东西低的分布特征;1961—2019年春季潜在蒸散以0.41 mm/a的速率显著增加(P < 0.05).③1981—2019年黄土高原区域潜在蒸散平均变化趋势为1.35 mm/a,其中62.98%的区域呈显著增加趋势(P < 0.05),多分布在东部和西部地区.④1961—2019年黄土高原区域各植被类型潜在蒸散变化均表现为不显著上升趋势,多年平均潜在蒸散大小表现为草原>农田>针叶林>草甸>阔叶林>灌丛,其中,1981—2019年各植被类型潜在蒸散增加趋势大小表现为阔叶林>针叶林>灌丛>农田>草甸>草原.⑤影响黄土高原区域各植被类型潜在蒸散的主要气象因子为平均风速与平均相对湿度,其次为日照时数.潜在蒸散随着平均风速和日照时数的增加而增加,随着平均相对湿度的增加而减小.研究显示,各植被类型潜在蒸散的增加与区域降水的减少可能会加剧水资源短缺态势,建议黄土高原地区在开展植被恢复工作时,应优先考虑耗水较少的树种,优化群落植被结构,充分利用光水热资源,修建蓄水设施,支撑区域生态环境的可持续发展.   相似文献   

16.
晋西黄土高原水资源植被承载力分析及对策建议   总被引:2,自引:0,他引:2       下载免费PDF全文
干旱缺水始终是黄土高原地区林业水资源管理面临的难题. 为了探究造成黄土高原地区林水失衡的主要原因,以2009—2012年晋西黄土高原蔡家川流域油松人工林树干液流量与土壤水分长期连续定位观测数据为基础,采用土壤有效水与单株油松耗水量的比值来衡量该区域水资源植被承载力. 结果表明:①在油松人工林实际密度(1 300株/hm2)下,油松人工林过度耗水是深层土壤干化的主要原因;降水量是决定水资源植被承载力的主要环境因子,降水量越大,油松人工林地的水资源植被承载力就越高. ②根据构建的降水量-水资源植被承载力拟合方程,在当地年均降水量为576 mm条件下,研究区20 a林龄油松人工林地水资源植被承载力为1 084株/hm2,而油松人工林地的实际密度远大于该水资源植被承载力. 在黄土高原地区,人工林密度过高是造成深层土壤干化、植被退化等生态恶化的主要原因. 因此,将人工林密度控制在当地水资源植被承载力范围之内,是减少林地深层土壤水分消耗、调节林地水平衡的重要措施.   相似文献   

17.
本文讨论了四个问题。第一,黄土高原的面积为 39.1×104km2,不是 56×104或43×104km2,其中黄河中游黄土高原的面积是 31.9×104km2。第二,应将黄土高原的治理和开发紧密结合,在治理中搞开发,以开发促治理。片面地强调二者中之一,都是不正确的。第三,首先要努力防止水的流失以减少土的流失,保水的方法又主要是改土,提高土的蓄水能力。第四,1971年至1983年黄河泥沙较前减少了36%,其中水土保持的减沙量占48%,由此证明“水土保持是治黄基础”的观点是正确的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号