首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Norovirus outbreaks are associated with the consumption of contaminated shellfish, and so efficient methods to recover and detect infectious norovirus in shellfish are important. The Proteinase K digestion method used to recover norovirus from shellfish, as described in the ISO 15216, would be a good candidate but its impact on the virus capsid integrity and thus infectivity was never examined. The aim of this study was to assess the impact of the Proteinase K digestion method, and of the heat treatment component of the method alone, on norovirus (genogroups I and II) and MS2 bacteriophage capsid integrity. A slightly modified version of the ISO method was used. RT-qPCR was used for virus detection following digestion of accessible viral RNA using RNases. MS2 phage infectivity was measured using a plaque assay. The effect of shellfish digestive glands (DG) on recovery was evaluated. In the presence of shellfish DG, a reduction in MS2 phage infectivity of about 1 log10 was observed after the Proteinase K digestion method and after heat treatment component alone. For norovirus GII and MS2 phage, there was no significant loss of genome following the Proteinase K digestion method but there was a significant 0.24 log10 loss of norovirus GI. In the absence of shellfish DG, the reduction in MS2 phage infectivity was about 2 log10, with the addition of RNases resulting in a significant loss of genome for all tested viruses following complete Proteinase K digestion method and the heat treatment alone. While some protective effect from the shellfish DG on viruses was observed, the impact on capsid integrity and infectivity suggests that this method, while suitable for norovirus genome detection, may not completely preserve virus infectivity.  相似文献   

2.
Different sources were consulted to obtain information on the occurrence of viruses in bivalve molluscs on the European market. Twenty-six peer-reviewed articles were identified reporting on the molecular detection of viral RNA in 4,260 samples in total. The data obtained will be presented geographically on virus types detected, the origin and treatment of the shellfish, and the detection technique applied. The data demonstrate that viral RNA can be detected in shellfish from polluted areas, in depurated shellfish as well as those for human consumption. The European Rapid Alert System for Food and Feed (RASFF) database was consulted as another source. Twenty-eight notifications were identified on the presence of hepatitis A virus or norovirus in shellfish on the European market. The most recent report of the European laboratory network was referred to, to gain insight into the laboratory capability at present for the analyses of shellfish on the presence of viruses. Approximately 67% of 27 participating laboratories obtained intended results for all samples, consisting of lenticules loaded with 103 copies norovirus (genogroup I (GGI) and/or genogroup II (GGII)) and/or 1 × 105–8 × 104 copies of hepatitis A virus. From 1993, there has been a continuous development of molecular detection techniques and tools have been described to ensure quality assurance. End product testing will, however, not be achievable. As depuration has been shown not to be effective for the complete elimination of viruses, shellfish should not be in contact with faecal contaminated water in order to minimise the risk of shellfish-transmittable viral diseases.  相似文献   

3.
In New Zealand shellfish are a significant food resource and shellfish are harvested for both recreational and commercial use. Commercially harvested Greenshell mussels (Perna canaliculus) and Pacific oysters (Crassostrea gigas) from aquaculture farms dominate consumption in New Zealand. Other commercial species include cockles (Austrovenus stuchburyii) and surf clam species which are wild harvested. The consumption of shellfish has been associated with gastroenteritis outbreaks caused by noroviruses following faecal contamination of growing waters with human waste. In New Zealand, since 1994 over 50 norovirus outbreaks linked to consumption of either New Zealand commercially grown oysters or imported oysters have been reported. An IEC/ISO 17025 accredited method for detection of noroviruses in bivalve shellfish was established in 2007. This method has been used in outbreak investigations to analyse implicated shellfish, in virus prevalence surveys and monitoring programmes, and commercially for product clearances. Surveys have shown that enteric viruses occur frequently in non-commercial shellfish, especially near sewage outfalls and following sewage discharge events. Viral source tracking methods have assisted in identifying pollution sources. The commercial shellfish industry operates under the Bivalve Molluscan Shellfish Regulated Control Scheme (BMSRCS), administered by the New Zealand Food Safety Authority. Recently regulatory measures were introduced into the BMSRCS to manage viruses. These include the closure of harvest areas for at least 28 days after human sewage contamination events and norovirus outbreaks. These management strategies, coupled with new information on norovirus prevalence in shellfish, have helped to improve the quality and safety of New Zealand shellfish.  相似文献   

4.
5.
6.
7.
The most effective methods for virus detection in food and environmental samples are those based on nucleic acid amplification. Complex methods must be applied by the analyst in order to control for false negative results of virus detection assays in those samples that may be contaminated by virus concentrations above the detection level. The verification of analytical results is a necessity and this depends on using an appropriate suite of controls to monitor the efficacy of the critical steps in the method and allow correct result interpretations to be made. We describe the suite of controls necessary for analysing food and environmental samples for the presence of enteric viruses by nucleic acid amplification-based methods. To exclude false negative and positive interpretations of results, the inclusion of this suite of controls will be essential when considering incorporating monitoring of viruses in food or environmental safety management plans.  相似文献   

8.
9.
Concentration and Recovery of Viruses from Water: A Comprehensive Review   总被引:2,自引:0,他引:2  
Enteric viruses are a cause of waterborne disease worldwide, and low numbers in drinking water can present a significant risk of infection. Because the numbers are often quite low, large volumes (100–1,000 L) of water are usually processed. The VIRADEL method using microporous filters is most commonly used today for this purpose. Negatively charged filters require the addition of multivalent salts and acidification of the water sample to effect virus adsorption, which can make large-volume sampling difficult. Positively charged filters require no preconditioning of samples, and are able to concentrate viruses from water over a greater pH range than electronegative filters. The most widely used electropositive filter is the Virosorb 1MDS; however, the Environmental Protection Agency has added the positively charged NanoCeram filters to their proposed Method 1615. Ultrafilters concentrate viruses based on size exclusion rather than electrokinetics, but are impractical for field sampling or processing of turbid water. Elution (recovery) of viruses from filters following concentration is performed with organic (e.g., beef extract) or inorganic solutions (e.g., sodium polyphosphates). Eluates are then reconcentrated to decrease the sample volume to enhance detection methods (e.g., cell culture infectivity assays and molecular detection techniques). While the majority of available filters have demonstrated high virus retention efficiencies, the methods to elute and reconcentrate viruses have met with varying degrees of success due to the biological variability of viruses present in water.  相似文献   

10.
The aim of this study was to evaluate the presence of human enteric viruses in shellfish collected along the Mediterranean Sea and Atlantic Coast of Morocco. A total of 77 samples were collected from areas potentially contaminated by human sewage. Noroviruses were detected in 30 % of samples, with an equal representation of GI and GII strains, but were much more frequently found in cockles or clams than in oysters. The method used, including extraction efficiency controls, allowed the quantification of virus concentration. As in previous reports, results showed levels of contamination between 100 and 1,000 copies/g of digestive tissues. Sapoviruses were detected in 13 % of samples mainly in oyster and clam samples. Hepatitis A virus was detected in two samples, with concentrations around 100 RNA copies/g of digestive tissues. Only two samples were contaminated with enterovirus and none with norovirus GIV or Aichi virus. This study highlights the interest of studying shellfish samples from different countries and different production areas. A better knowledge of shellfish contamination helps us to understand virus levels in shellfish and to improve shellfish safety, thus protecting consumers.  相似文献   

11.
A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.  相似文献   

12.
13.
High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP’s potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such as shellfish and produce. The sensitivity of a number of different picornaviruses to HPP is variable. Experiments suggest that HPP inactivates viruses via denaturation of capsid proteins which render the virus incapable of binding to its receptor on the surface of its host cell. Beyond the primary consideration of treatment pressure level, the effects of extending treatment times, temperature of initial pressure application, and matrix composition have been identified as critical parameters for designing HPP inactivation strategies. Research described here can serve as a preliminary guide to whether a current commercial process could be effective against HuNoV or HAV.  相似文献   

14.
Human fecal wastes contain a large variety of viruses that can enter the environment through discharge of waste materials from infected individuals. Despite the high diversity of viruses that are introduced into the environment by human fecal pollution, only a few have been recognized to cause disease in association with consumption of contaminated shellfish. To explain bivalve mollusks contamination, several factors including human epidemiology, virus persistence through sewage treatment plant, and shellfish uptake may be suggested. Considering different outbreaks described in the literature, the most common route for transmission is accidental contamination after heavy rainfall, when extra loads cause an overflow, and release of untreated sewage into the aquatic environment. Outbreak analysis also demonstrates the impact on shellfish consumption of some viral strain transmission and thus their impact on molecular epidemiology, especially for norovirus. To limit shellfish contamination and thus to protect the consumer, the most desirable and effective option is to reduce the viral input.  相似文献   

15.
建立一种胶体金快速免疫层析检测贝类体内腹泻性贝毒主要成分软海绵酸及其衍生物鳍藻毒素的方法。合成偶联抗原OA-OVA,将适当浓度的偶联抗原和HRP标记的羊抗鼠IgG分别包被在试纸条的检测线和控制线上,胶体金标记的抗OA单克隆抗体包被金标垫,优化检测线的最佳包被浓度等条件以得到最低检出限。结果表明:该试纸条的检出限为16 ng/mL(OA,DTX1 & DTX2),检测时间为10 min。本研究所建立的胶体金免疫层析检测贝类中大田软海绵酸及其衍生物鳍藻毒素的方法可以满足规定的160 μg/kg贝肉的安全阈值,可以应用于实际贝类样品的腹泻性贝毒的半定量检测。  相似文献   

16.
Shellfish-Borne Viral Outbreaks: A Systematic Review   总被引:1,自引:0,他引:1  
Investigations of disease outbreaks linked to shellfish consumption have been reported in the scientific literature; however, only few countries systematically collate and report such data through a disease surveillance system. We conducted a systematic review to investigate shellfish-borne viral outbreaks and to explore their distribution in different countries, and to determine if different types of shellfish and viruses are implicated. Six databases (Medline, Embase, Scopus, PubMed, Eurosurveillance Journal and Spingerlink electronic Journal) and a global electronic reporting system (ProMED) were searched from 1980 to July 2012. About 359 shellfish-borne viral outbreaks, alongside with nine ProMED reports, involving shellfish consumption, were identified. The majority of the reported outbreaks were located in East Asia, followed by Europe, America, Oceania, Australia and Africa. More than half of the outbreaks (63.6 %) were reported from Japan. The most common viral pathogens involved were norovirus (83.7 %) and hepatitis A virus (12.8 %). The most frequent type of consumed shellfish which was involved in outbreaks was oysters (58.4 %). Outbreaks following shellfish consumption were often attributed to water contamination by sewage and/or undercooking. Differences in reporting of outbreaks were seen between the scientific literature and ProMED. Consumption of contaminated shellfish represents a risk to public health in both developed and developing countries, but impact will be disproportionate and likely to compound existing health disparities.  相似文献   

17.
The aim of the study was to define the occurrence of human noroviruses of genogroup I and II (NoV GI and NoV GII) and hepatitis A virus (HAV) in the Baltic Sea mussels. The shellfish samples were taken at the sampling sites located on the Polish coast. In total, 120 shellfish were tested as pooled samples using RT-PCR and hybridisation with virus specific probes. NoV GI was detected in 22 (18.3 %), NoV GII in 28 (23.3 %), and HAV in 9 (7.5 %) of the shellfish. The nucleotide sequence analysis of the detected NoV GII strains showed a 97.3–99.3 % similarity to GII.4 virus strain. This is the first report describing the NoV and HAV occurrence in wild Baltic mussels and their possible role as bioindicators of seawater contamination with human enteric viruses.  相似文献   

18.
Various methods to detect foodborne viruses including norovirus (NoV) in contaminated food have been developed. However, a practical method suitable for routine examination that can be applied for the detection of NoVs in oily, fatty, or emulsive food has not been established. In this study, we developed a new extraction and concentration method for detecting NoVs in contaminated composite meals. We spiked NoV-GI.4 or -GII.4 stool suspension into potato salad and stir-fried noodles. The food samples were suspended in homogenizing buffer and centrifuged to obtain a food emulsion. Then, anti-NoV-GI.4 or anti-NoV-GII.4 rabbit serum raised against recombinant virus-like particles or commercially available human gamma globulin and Staphylococcus aureus fixed with formalin as a source of protein A were added to the food emulsion. NoV-IgG-protein A-containing bacterial complexes were collected by centrifugation, and viral RNA was extracted. The detection limits of NoV RNA were 10–35 copies/g food for spiked NoVs in potato salad and stir-fried noodles. Human gamma globulin could also concentrate other NoV genotypes as well as other foodborne viruses, including sapovirus, hepatitis A virus, and adenovirus. This newly developed method can be used as to identify NoV contamination in composite foods and is also possibly applicable to other foodborne viruses.  相似文献   

19.
Enteric viruses are often present in low numbers in various water matrices. Virus sampling therefore involves multiple concentration steps to condense large samples down to small volumes for detection by cell culture or molecular assays. The NanoCeram® Virus Sampler has been demonstrated to be effective for the recovery of viruses from tap water, surface waters, and seawater. The goal of this study was to evaluate a new method using NanoCeram® filters for the recovery of poliovirus 1 (PV-1) from treated wastewater. Activated sludge effluent samples were spiked with PV-1 and concentrated in side-by-side tests by two methods: (1) NanoCeram® filtration, elution with sodium polyphosphate buffer, secondary concentration via centrifugal ultrafiltration; and (2) 1MDS filtration, elution with beef extract, secondary concentration via organic flocculation. The virus retention and elution efficiencies did not differ significantly between the two methods. In contrast, the secondary concentrate volume was smaller for the NanoCeram® method (8.4 vs. 30 mL) and the secondary concentration efficiencies were different between the two methods with 98 % for centrifugal ultrafiltration (NanoCeram®) and 45 % for organic flocculation (1MDS). The overall method efficiencies were significantly different (P ≤ 0.05) with the NanoCeram® method yielding a 57 % and the 1MDS a 23 % virus recovery. In addition, there appeared to be less interference with viral detection via polymerase chain reaction with the NanoCeram® concentrates. This NanoCeram® method therefore is able to efficiently recover PV-1 from large volumes of wastewater and may serve as an inexpensive alternative to the standard 1MDS filter method for such applications.  相似文献   

20.
Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号