首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
改性木屑对水中刚果红的吸附性能研究   总被引:5,自引:2,他引:3  
吴艳  罗汉金  王侯 《环境科学学报》2014,34(7):1680-1688
对十六烷基三甲基溴化铵(CTAB)改性木屑用于水中刚果红(CR)的去除进行了研究.用扫描电子显微镜(SEM)和傅里叶红外光谱分析仪(FTIR)对木屑和改性木屑的性能进行表征.探讨了反应时间、pH、温度、剂量以及离子强度对改性木屑去除CR的影响.实验结果表明,CTAB改性后的木屑对刚果红的吸附量明显增大,改性前后木屑的最大吸附量分别为30.30和111.36 mg·g-1.反应过程在前20 min内反应速率很快,并约在120 min内达到吸附平衡.吸附动力学符合伪二级动力学模型.最佳反应温度为328 K,吸附剂最适投加量为0.09 g,吸附量的大小与溶液的初始pH值有关,且增加盐浓度,改性木屑的吸附能力增加.吸附等温线符合Langmuir方程,且吸附过程为吸热反应.  相似文献   

2.
该文利用NaOH改性后的头发进行亚甲基蓝(MB)吸附研究。通过扫描电子显微镜和红外光谱对头发和改性头发的性能进行表征,并探讨了初始pH、吸附剂投加量、初始染料浓度和反应时间对吸附效果的影响。结果表明,NaOH改性头发可以氧化表层胱氨酸中的二硫键,使其表面荷负电,提高MB的去除率。当吸附剂投加量为0.5 g/L、初始pH为10.0、温度为298 K时,反应在120 min内达到平衡,符合准二级动力学模型。通过Langmuir等温吸附模型得到改性头发的最大吸附量为515.46 mg/g。该吸附剂制备方法简单,再生能力强,对于MB染料废水去除有良好的应用前景。  相似文献   

3.
李洁  肖琳 《环境科学》2016,37(10):3850-3857
本研究合成了一种新型高效的去除铜绿微囊藻(Microcystis aeruginosa)的氧化石墨烯/季铵盐聚乙烯亚胺(GO/QPEI)纳米复合材料.GO/QPEI在pH为4~10的条件下都具有高效去除M.aeruginosa的能力,其去除能力在2 min内可达96%以上.GO/QPEI对微囊藻的吸附更符合Freundlich方程,最大吸附量为5.58×1011cells·mg-1.吸附动力学表明GO/QPEI的假二级吸附反应.GO纳米片和QPEI的协同效应是其高效去除微囊藻的主要机制.  相似文献   

4.
将壳聚糖(CTS)、氧化石墨烯(GO)、3-巯基丙基三甲氧基硅烷(MPTMS)交联制得巯基改性壳聚糖-氧化石墨复合材料(SFCG).采用傅里叶变换红外光谱仪、扫描电子显微镜、元素分析仪对改性前后和吸附前后的材料进行表征.研究吸附剂投加量、温度、时间、初始浓度对吸附效果的影响.实验结果表明,SFCG与CTS相比结构发生很大变化,呈现薄层状结构,表面有褶皱.SFCG能够在短时间内选择性高效吸附Ag(Ⅰ),最大吸附量为578.41 mg·g~(-1).通过吸附等温线、吸附动力学、吸附热力学的研究发现,其吸附等温线符合Langumir吸附模型,为单层吸附;吸附过程符合准二级动力学模型,以化学吸附为主,同时吸附过程是自发的、放热的.另外,银是一种贵金属,因此,SFCG将在废水处理和回收贵金属等方面均表现出良好的应用前景.  相似文献   

5.
铜离子和孔雀绿在磷酸酯化改性豆壳上的吸附行为   总被引:4,自引:1,他引:3  
报道了一种功能基为磷酸羟基的酯化豆壳阳离子吸附剂的固相制备技术,研究了铜离子和孔雀绿在改性豆壳上的吸附行为.采用静态批次试验研究了不同实验参数(pH值、吸附剂用量、吸附质浓度和吸附时间)对铜和染料吸附的影响.铜离子和孔雀绿分别在pH≥3.0和6.0时达到最大吸附值.对于浓度为100 mg·L-1的铜溶液,5.0 g·L-1及以上的改性豆壳能去除91%以上的铜;改性豆壳用量≥2.0 g·L-1时,能去除浓度为250 mg·L-1的溶液中95%以上的孔雀绿.改性豆壳对铜离子和孔雀绿的吸附符合Langmuir吸附等温线模型,最大吸附能力分别为31.55 mg·g-1和178.57 mg·g-1.对铜离子和孔雀绿的吸附分别在75 min和7 h达到吸附平衡,准一级反应动力学方程和准二级反应动力学方程能分别描述铜离子和孔雀绿在改性豆壳上的吸附过程.  相似文献   

6.
靳友彬  胡云  孙进  龚仁敏 《环境科学学报》2006,26(12):1987-1993
为促进工业废水处理并降低废水处理费用,研究了柠檬酸热化学酯化法改性稻草制备可生物降解阳离子吸附剂的方法.实验比较了天然和改性稻草去除溶液中阳离子染料(亚甲蓝)的能力,研究了不同实验参数(pH值、吸附剂量、染料浓度、离子强度、吸附时间)对亚甲蓝吸附效果的影响在pH为2~10范围内,天然稻草去除亚甲蓝的能力随pH值的增加而增加,而改性稻草在pH≥3时对染料的去除率达到最大.改性稻草用量大于1.5g·L-1时几乎能完全去除浓度为250mg·L-1亚甲蓝溶液中的染料.改性稻草用量为2.0g·L-1对浓度为50~450mg·L-1的亚甲蓝溶液去除率保持在98%以上.增加溶液的离子强度会导致亚甲蓝去除率降低.染料吸附等温线符合Langmuir模式.吸附过程符合准一级反应动力学方程.酯化改性使染料的吸附剂粒子内扩散速率常数(kid)大大增加.研究结果表明,改性稻草是良好的亚甲蓝吸附剂.  相似文献   

7.
改性氧化石墨烯/壳聚糖功能材料对刚果红的吸附研究   总被引:1,自引:0,他引:1  
张丽  罗汉金  方伟  冯林强 《环境科学学报》2016,36(11):3977-3985
以氧化石墨烯(GO)和壳聚糖(CS)为前体物,以乙二胺四乙酸二钠(EDTA-2Na)为表面改性剂,制备了一种新型改性氧化石墨烯/壳聚糖功能材料(GEC),并将此材料作为吸附剂用于水中刚果红的吸附去除,探讨了时间、pH值、吸附剂投加量、温度及初始浓度对GEC吸附去除刚果红的影响.结果表明,GEC对水中刚果红具备良好的吸附能力,且在pH=2~12的范围内都具有较佳的吸附效果.GEC对刚果红的吸附动力学可以较好地用伪二级动力学模型进行描述,其吸附数据可应用Langmuir吸附等温模型进行拟合,其吸附过程是自发的吸热反应过程.根据Langmuir模型计算得到GEC室温条件下最大吸附量为175.43 mg·g~(-1).用2 mol·L~(-1)NaOH溶液在60℃水浴条件下对GEC进行脱附再生实验,在重复循环利用6次后,GEC对刚果红的吸附量仅下降了5.89%,刚果红的去除率仍保持在88%以上.以上结果表明,GEC适合作为一种有效的吸附剂去除水中刚果红.  相似文献   

8.
锰氧化物改性硅藻土对苯胺的去除动力学与机制   总被引:1,自引:1,他引:0  
肖少丹  刘露  姜理英  陈建孟 《环境科学》2015,36(6):2175-2184
硅藻土经焙烧并用高锰酸钾和盐酸改性处理,制备出一种新型的改性硅藻土(Mn-D).考察了Mn-D制备过程中焙烧温度和改性比例(ρ)对其去除苯胺性能的影响,探讨了Mn-D对苯胺的去除动力学行为和去除机制.结果表明,当焙烧温度为450℃、ρ为1.6和负载δ-Mn O2量为0.82 g·g-1时,Mn-D对苯胺有最佳去除效率且伴有Mn2+的释放,10 min内可达饱和吸附量的80%.在酸性条件下,准二级方程能够较准确地描述Mn-D对苯胺的去除动力学行为,且其过程主要由颗粒内扩散过程控制;Freundlich方程能较好地拟合苯胺在Mn-D上的等温吸附过程;通过气相色谱-质谱联用仪对反应产物进行检测分析,发现偶氮苯为主要中间产物,并提出了苯胺的可能去除途径.  相似文献   

9.
改性麦草秸秆对水中磷酸根吸附效果的研究   总被引:9,自引:0,他引:9  
为实现农作物秸秆资源化,解决水体富营养化问题,将麦草秸秆化学改性成一种可以有效吸附水体中磷酸根的阳离子型吸附剂.考察了吸附剂投加量、磷酸根溶液初始pH、温度等因素对吸附效果的影响,分析了改性麦草秸秆对磷酸根的吸附动力学过程和吸附机理.结果表明,在吸附剂投加量为4 g·L-1和磷酸根溶液初始pH为4.0~7.5条件下,改性麦草秸秆对磷酸根的吸附效果最好,去除率均高于90%;改性麦草秸秆对磷酸根的吸附符合Freundlich等温模式,饱和吸附容量为2.38 mmol·g-1;吸附过程符合一级反应动力学方程,为快速反应过程;反应活化能为12.6 kJ·mol-1,反应速率对温度的变化不敏感.  相似文献   

10.
针对含重金属Sb(III)废水处理问题,采用液相还原法制备出高效的还原氧化石墨烯负载纳米零价铁(nZVI/rGO)复合吸附材料,并采用多种技术手段对所制备的nZVI/rGO复合材料进行表征.同时,复合材料中nZVI的负载量、吸附剂投加量、初始pH值以及反应温度等因素对废水中Sb(Ⅲ)吸附去除效果的影响被全面考察,并进一步对吸附过程进行吸附等温线和吸附动力学拟合.结果表明,在25℃,pH为3.0时,当nZVI负载量为70wt%,nZVI/rGO投加量为0.5g/L时,Sb(Ⅲ)的去除率最高,140min内可达99.7%.该吸附过程符合准二级动力学模型与Langmuir等温吸附模型,因此nZVI/rGO被证实是一种高效的Sb(III)吸附材料.  相似文献   

11.
N原子杂化石墨烯高效活化过一硫酸盐降解RBk5染料废水   总被引:6,自引:4,他引:2  
过硫酸盐高级氧化技术使用过程中,活化剂的大量流失与其环境二次危害是影响该技术应用的主要限制因素.针对这一问题本研究采用改进的Hummers法结合水热法制备环境友好型的N原子掺杂石墨烯作为催化剂,活化过一硫酸盐(PMS)产生硫酸根自由基(SO4-·)和羟基自由基(·OH)降解活性黑5(RBk5)染料.利用傅立叶红外光谱,X-射线光电子能谱,拉曼光谱和透射电子显微镜对N原子掺杂石墨烯进行表征.对催化剂催化性能进行研究,考察了初始p H、催化剂投加量和PMS投加量等因素对降解过程的影响.结果表明,N元素掺杂能够有效提升石墨烯材料的PMS催化活性,且活性受N掺杂比例影响较大;废水的初始p H对降解效率无明显影响.催化剂投加量为1. 5 g·L-1,PMS投加量为0. 3 g·L-1的条件下,反应25min后RBk5染料废水的降解率可达到99%以上,反应过程符合一级反应动力学.自由基猝灭实验显示,N掺杂石墨烯/PMS体系降解RBk5为表面反应,SO4-·和·OH为降解RBk5的主要自由基.循环实验证明催化剂稳定性能良好.  相似文献   

12.
通过直接沉淀-热改性法将纳米氢氧化镁晶体(Mg(OH)_2)负载在生物质炭(BC)上,系统研究了该改性材料(Mg(OH)_2-BC)对模拟废水中氮、磷的固定特性,并探讨了投加量、反应溶液pH、接触时间对吸附过程的影响.结果表明,Mg(OH)_2-BC在投加量为0.3 g·L~(-1),反应溶液初始pH为7,反应时间≥40 min时对氮、磷的固定效果最佳,最大吸附量分别达到58.8、130.0 mg·g~(-1).Mg(OH)_2-BC对氮、磷的吸附过程均符合准二级动力学模型,吸附过程受化学吸附机理的控制.通过SEM、XRD、FTIR等对反应产物进行表征分析,结果表明,Mg(OH)_2-BC对氮、磷的固定机制主要为鸟粪石结晶沉淀,也即化学沉淀.  相似文献   

13.
铁改性赤泥吸附剂的制备及其除砷性能研究   总被引:5,自引:0,他引:5  
以氧化铝生产废渣--赤泥为原料,采用铁盐改性处理制备了新型羟基铁包覆型赤泥除砷吸附剂.研究考察了吸附剂吸附砷效能、投加量、吸附时间和pH值对吸附除砷效果的影响;采用扫描电镜(SEM)、红外光谱(IR)、比表面积(BET)等仪器对吸附剂进行了表征,并探讨了吸附机制.结果表明,铁盐改性赤泥吸附剂对As(V)具有显著吸附效能,在pH为7,初始砷浓度为1 mg·L-1,铁盐改性赤泥吸附剂饱和吸附容量为50.6mg·g-1时,除砷率高达99.9%,吸附后出水砷含量可达到0.01 mg·L-1以下,吸附规律符合Langmuir等温方程式;溶液pH值显著影响砷去除效果,吸附机制主要为羟基铁的表面吸附机制;吸附后的吸附剂可通过NaOH溶液再生,脱附率达到92.1%.  相似文献   

14.
有机改性凹凸棒石对养猪废水中有机物的吸附研究   总被引:4,自引:0,他引:4  
研究表征了十二烷基二甲基甜菜碱和十六烷基三甲基溴化铵改性凹凸棒石的结构,探讨了改性凹凸棒石对猪粪废水中的有机污染物的吸附性能及机理,并考察了改性剂修饰比例、废水p H、吸附剂的投加量对吸附过程的影响.结果表明,两种改性剂成功结合到了凹凸棒石表面,有机改性凹凸棒石的晶体结构未发生改变,但对有机污染物的吸附能力显著高于原土.两性和阳离子改性凹凸棒石吸附有机污染物的最佳参数为:修饰比例为100%,吸附剂浓度为16 g·L~(-1),p H=4(阳离子改性为6),对猪粪废水中COD的去除率分别达到88%和92%,吸附量分别达到79 mg·g~(-1)和82 mg·g~(-1).吸附过程均符合二级动力学模型(R20.998),两性和阳离子改性凹凸棒石对有机物的吸附分别符合Freundlich和Langmuir等温式.有机改性凹凸棒石的疏水性增强,提高了对有机污染物的吸附能力,其沉降性能良好,这使其作为一种吸附剂用于实际养猪废水的处理成为可能.  相似文献   

15.
TiO2/膨润土复合材料对Hg2+的吸附性能研究   总被引:1,自引:1,他引:0  
利用纳米TiO_2对膨润土进行复合改性,制备TiO_2/膨润土复合材料.采用电镜扫描、X-射线衍射表征改性前后膨润土的结构和形貌.通过室内模拟实验,以膨润土为对照,研究不同添加量、pH、吸附时间及初始Hg~(2+)浓度等条件下,TiO_2/膨润土复合材料对Hg~(2+)的吸附特性与性能,同时通过正交试验,探究TiO_2/膨润土复合材料吸附Hg~(2+)的最优条件.结果表明,改性后的膨润土颗粒明显变小,且颗粒疏松多空孔,层间距增大.相比于膨润土,TiO_2/膨润土复合材料吸附性能得到极大提高.TiO_2/膨润土复合材料对Hg~(2+)的吸附率均随着添加量、pH、吸附时间的增大而增大,添加量为1.5 g·L~(-1)、pH为7.0、吸附时间为120 min时,吸附率达98.0%以上.但TiO_2/膨润土复合材料对Hg~(2+)的吸附率随着初始Hg~(2+)浓度的增大而减小.通过4种动力学模型拟合发现,吸附过程符合假二级动力学方程,吸附以化学吸附为主.吸附等温线更符合Langmuir等温方程,属于典型的单分子层吸附,最大吸附量为20.66 mg·g-1.吸附Hg~(2+)的最优实验条件:添加量为2.0 g·L~(-1),pH为8.0,初始Hg~(2+)浓度为45 mg·L~(-1),吸附时间为16 h,此时吸附率99.9%,平衡浓度为0.034 mg·L~(-1).  相似文献   

16.
地聚合物(Geopolymer,简称GP)是由含硅铝酸盐的偏高岭土(Metakaolin,简称MK)或固体废料(如粉煤灰)经碱性激活制备的立体网状结构无机聚合物,对大部分重金属阳离子有良好的吸附作用,但对以阴离子形态存在的重金属吸附效果很差.本研究以偏高岭土为主要原料制备GP,同时用CTAB进行改性,研究其化学组成变化及对典型以阴、阳离子形态存在的重金属Cr(VI)和Cu(II)的同时吸附作用.结果表明,pH为5、吸附时间为24 h、初始浓度为50 mg·L-1、吸附剂投加量为1 g·L-1时,CTAB-GP对Cu(II)的去除率达到98.6%,Cr(VI)的最高去除率为25.6%,同时还发现溶液中Cu(II)的存在对吸附Cr(VI)有较大促进作用.整体来看,两种金属混合吸附时很好地符合二级动力学规律,单溶质吸附很好地符合Langmuir和Freundlich等温式,Cu(II)和Cr(VI)的理论最大吸附量分别为147.1 mg·g-1和63.1 mg·g-1.XRD、FTIR和BET表征分析结果表明,CTAB-GP中即使存在季铵盐阳离子,但依然属于地聚合物.CTAB-GP可以不牺牲对重金属阳离子吸附性能的同时吸附阴离子,优于常规地聚合物,鉴于CTAB-GP的这种特性,其在重金属污染防治中显示出极大的应用前景.  相似文献   

17.
为获得价格低廉、吸附性能优良的石墨烯基吸附剂,以氧化石墨烯(GO)、羧甲基纤维素(CMC)为基材,以聚乙烯亚胺(PEI)为改性试剂,通过化学修饰的方法制备了氨基修饰氧化石墨烯-羧甲基纤维素复合吸附剂(GO-PEI-CMC).采用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)及X射线光电子能谱(XPS)等表征手段证实了CMC、氧化石墨烯与PEI已成功复合.静态吸附实验表明GO-PEI-CMC对Cr (VI)表现出良好的吸附性能,由Langmuir等温吸附模型所得最大吸附量值为243.92 mg·g-1.吸附动力学、吸附等温线研究表明GO-PEI-CMC对Cr (VI)的吸附为单分子层、化学吸附过程.GO-PEI-CMC对Cr (VI)吸附性能优良,且具有绿色环保、可生物降解的优点,是一种极具潜力的Cr (VI)吸附剂.  相似文献   

18.
为解决水体中重金属Cu2+污染,本研究首先采用水热法制备得到超顺磁四氧化三铁纳米粒子,然后使用对Cu2+具有强络合作用的含有丰富氨基官能团的支化聚乙烯亚胺接枝到纳米粒子表面,得到Fe3O4@BPEI磁性纳米吸附剂。采用红外光谱(FTIR)、X射线粉末衍射(XRD)、透射电子显微镜(TEM)等对其结构、尺寸及形貌进行表征。研究了不同吸附因素对吸附剂吸附Cu2+的影响,确定了最佳吸附条件,并通过吸附动力学模型和吸附等温线模型进一步探讨吸附机理。结果表明:支化聚乙烯亚胺成功接枝到四氧化三铁纳米粒子表面。最佳吸附条件为pH=6.0、吸附平衡时间为40 min、吸附剂用量为10 mg。通过实验数据拟合,Fe3O4@PEI吸附Cu2+的过程符合Langmuir等温吸附方程和拟二级动力学模型,表明吸附过程为化学吸附控制的单分子层覆盖,在303 K时,模型理论饱和吸附量为141.24 mg/g。表明支化聚乙烯亚胺修饰的磁性纳米吸附剂对Cu2+具有较强的吸附能力,对水体中Cu2+的去除具有一定的应用前景。  相似文献   

19.
采用活性炭/海藻酸钠-聚乙烯醇复合水凝胶(CAP)为吸附剂,以水溶液中的亚甲基蓝(MB)和Cu~(2+)为目标污染物,考察了固液比、p H、温度、反应时间、MB和Cu~(2+)的初始浓度等因素对吸附过程的影响.通过SEM、FTIR、BET等手段对CAP物化性质进行了表征.结果表明,CAP内部呈现互穿的三维网络多孔结构,成功复合了活性炭,具有丰富的—COOH和—OH官能团,比表面积可达112.7 m~2·g~(-1).CAP对MB和Cu~(2+)的吸附量随着固液比、温度的增大而降低,随着溶液初始p H的升高而增大;吸附属于Langmuir单层吸附,对MB和Cu~(2+)的最大吸附量分别为1 940.75 mg·g~(-1)和190.48 mg·g~(-1);反应时间在5 h内吸附量可达最大吸附量的90%,吸附动力学过程符合准二级动力学方程;活性炭/高分子复合水凝胶经过5次吸附-脱附循环再生后,仍能保持优异的吸附性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号