首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
重庆市北碚城区大气中VOCs组成特征研究   总被引:11,自引:4,他引:7  
2012年3月~2013年2月,使用特制的不锈钢钢瓶采集重庆市北碚城区大气样品,并采用三步预浓缩-气相色谱/质谱法对所采集的气体样品进行检测.本研究共检出78种挥发性有机物(volatile organic compounds,VOCs),其中烷烃25种,烯烃15种,芳香烃28种,卤代烃10种.结果表明,重庆市北碚大气中年均浓度最高的前7种VOCs分别为:二氯甲烷(3.08×10-9,体积分数,下同)、苯(2.09×10-9)、异戊烷(1.85×10-9)、甲苯(1.51×10-9)、丙烷(1.51×10-9)、间/对-二甲苯(1.43×10-9)、苯乙烯(1.39×10-9).北碚大气中总挥发性有机物(total volatile organic compounds,TVOCs)浓度为33.89×10-9,季节变化表现为:春季(42.57×10-9)>秋季(33.89×10-9)>冬季(31.91×10-9)>夏季(27.04×10-9).从组成来看,烷烃和芳香烃对TVOCs贡献最大,分别达到31.5%和30.7%;其次是卤代烃类,占27.4%;含量最少的组分是烯烃,所占比例仅为10.4%.采用臭氧生成潜势对VOCs组分活性分析结果表明,烯烃类和芳香烃类化合物是对北碚大气O3生成贡献最大的物质.利用主成分分析法对大气样品中VOCs来源进行分析,发现北碚大气VOCs主要源于机动车尾气排放,贡献比为50.41%.北碚大气中T/B年均值为0.73,表明大气中的苯类物质主要来源于机动车的尾气排放,受溶剂挥发的影响较小.  相似文献   

2.
唐山市和北京市夏秋季节大气VOCs组成及浓度变化   总被引:23,自引:17,他引:6  
孙杰  王跃思  吴方堃  邱俊 《环境科学》2010,31(7):1438-1443
2007年和2008年6~9月,利用前级浓缩-气相色谱/质谱法,对唐山市大气中挥发性有机物的组成及浓度变化进行了采样分析研究.2008唐山市大气VOCs平均浓度为163.5×10-9C(碳单位体积比,下同),其中饱和烷烃占45.9%、芳香烃占29.9%、烯烃占5.9%、卤代烃占18.8%;相对2007年同期唐山大气VOCs平均浓度340.4×10-9C下降了51.9%,苯系物下降幅度最大为66.5%,卤代烃中工业排放的二氯苯浓度有所上升;2008唐山市大气VOCs比同期北京大气VOCs浓度低8.5%,奥运时段VOCs变化表明,唐山市大气VOCs除交通源外工业排放也是大气污染的重要来源.  相似文献   

3.
我国北方典型城市大气中VOCs的组成及分布特征   总被引:13,自引:0,他引:13       下载免费PDF全文
从2008年4月到2009年1月,利用前级浓缩-气相色谱/质谱法,对天津市和沈阳市大气中的挥发性有机物及浓度变化进行了采样研究.共监测了108种VOCs,包括卤代烷烃39种、苯系物16种、烯烃12种、烷烃30种、醛酯11种,在天津市检测到挥发性有机污染物中,醛酯56.9%,卤代烷烃13.4%,烷烃13.1%,苯系物12.9%,烯烃2.5%,卤代烯烃1.1%.沈阳市醛酯49.3%,卤代烷烃17.8%,烷烃11.8%,苯系物10.3%,卤代烯烃7.8%,烯烃2.9%.2市VOCs的含量季节变化都是春秋季节大于冬夏季节,在不同季节不同点位的VOCs的总量的变化趋势几乎一致,并且分析了天津市和沈阳市苯系物和卤代烃的的主要组成成分以及主要来源,苯系物的主要成分包括苯、甲苯、乙苯、二甲苯,苯系物的主要来源是汽车尾气,卤代烷烃的主要成分是二氯甲烷和氯乙烯,主要来自于汽车尾气和石油化工.  相似文献   

4.
北京市大气中挥发性有机物的组成特征   总被引:34,自引:0,他引:34  
采用预浓缩—GC-MS方法分析了北京市大气中挥发性有机物(VOCs)的组成,共检测出108种,其主要成分是饱和烷烃(33%)、芳香烃(21%)、烯烃(16%)、卤代烷烃(20%)、卤代烯烃(9%)和卤代芳香烃(1%),总VOCs平均质量浓度为(163 7±39 0)μg m3。更重要的是,在检出物中有54种是有毒有害的物质,主要成分是苯系物和卤代烃,其中苯,甲苯,丙烯,1,3-丁二烯,氯乙烯和1,2-二氯乙烷是含量最高的组分。   相似文献   

5.
长沙大气中VOCs研究   总被引:10,自引:6,他引:4  
刘全  王跃思  吴方堃  孙杰 《环境科学》2011,32(12):3543-3548
应用大气采样罐采样技术和色谱-质谱联用(GC-MS)技术,对2008年长沙市大气中76种挥发性有机物(VOCs)的组分及其质量浓度水平进行测试,比较了各组分对臭氧产生的影响潜势,同时对其主要来源进行简单分析.结果表明,长沙大气总VOCs在上午和下午的浓度分别是38.4×10-9(体积分数)和22.7×10-9(体积分数),下午大气中VOCs浓度显著低于上午;季节变化呈现VOCs冬季浓度远高于夏季VOCs浓度,组分中以卤代烃最高,烷烃、芳烃次之,烯烃最低,OH消耗速率最高的物质是间、对二甲苯(10.71×10-9 C,碳单位体积比,下同);其次为1,2,4-三甲苯(6.04×10-9 C)和1,3,5-三甲苯(2.23×10-9 C).芳烃对大气O3生成贡献最大(66%),其次是烯烃(26%),烷烃最低(8%).高浓度的异戊烷和丙烷说明了机动车排放和液化石油气是VOCs来源之一,苯/甲苯的特征比值接近0.8,远高于机动车尾气排放特征比值0.5;说明溶剂和涂料挥发是其主要来源之一.  相似文献   

6.
长白山地区大气VOCs 的观测研究   总被引:7,自引:1,他引:6       下载免费PDF全文
为了解我国东北内陆背景大气中挥发性有机物(VOCs)的浓度水平和变化形式,采用3 步冷冻浓缩和GC/MS 联用技术对长白山地区大气中VOCs 进行了为期1 年的采样分析.结果表明,长白山地区大气中总挥发性有机物(TVOCs)年平均浓度为(181.7±69.6)×10-9C(碳单位体积比),其中烷、烯、芳香和卤代烃4 类物质的百分含量依次为43%、22%、31%和4%.烷烃类物质中异戊烷、2-甲基戊烷、正戊烷和3-甲基戊烷等机动车尾气或汽油挥发特征性物质浓度最高;芳香烃类物质中苯/甲苯的特征比值略高于机动车尾气排放特征比值0.5;烯烃类物质以植物排放的蒎烯、异戊二烯为主.从高浓度VOCs 种类分析,长白山地区大气VOCs 受汽车污染和森林排放双重控制.TVOCs 浓度年度峰值出现在春季,为(206.0±58.9)×10-9C;谷值出现在冬季,为(152.3±53.9)×10-9C.根据等效丙烯浓度的计算,烯烃对该地区O3 生成贡献最大,而含量丰富的烷烃、芳香烃则在光化学反应中贡献较小.  相似文献   

7.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10~(-9),C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10~(-9)]风景区[(21. 7±4. 4)×10~(-9)]交通居民混合区[(20. 8±7. 2)×10~(-9)].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10~(-9)),夏季风景区VOCs浓度最高(21. 5×10~(-9)).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著高于风景区和交通居民混合区.通过T/B(甲苯/苯)探讨VOCs的来源发现,机动车和溶剂使用是城区大气VOCs的主要来源.功能区的OFP排序为工业区交通居民混合区风景区,烯烃对OFP的贡献最高,其次为芳香烃.  相似文献   

8.
厦门冬春季大气VOCs的污染特征及臭氧生成潜势   总被引:10,自引:4,他引:6  
2014年1~4月在厦门市城区和郊区开展冬春季节大气样品的采集,采用大气预浓缩系统与GC/MS联用技术定量了48种大气挥发性有机物(VOCs),对比分析了冬春季城区和郊区大气VOCs的污染特征,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,冬季厦门城区和郊区大气中VOCs的平均体积分数分别为11.13×10-9和7.17×10-9,春季厦门城区和郊区大气中VOCs的平均体积分数分别为24.88×10-9和11.27×10-9,且均表现为烷烃芳香烃烯烃.通过B/T值探讨城区和郊区VOCs的来源发现,机动车和溶剂挥发是城区VOCs的主要来源,郊区VOCs除了局地源的贡献外,还受到外来污染物扩散传输的影响.城、郊区的主要VOCs包括丙烯、正丁烷、异丁烷、正戊烷、异戊烷、正己烷、苯、甲苯、乙苯和间对二甲苯,这10种组分对两地VOCs的贡献表现为春季(城区和郊区分别为62.83%和53.74%)高于冬季(城区和郊区分别为61.57%和45.83%).城、郊区VOCs的臭氧生成潜势分析显示,芳香烃的相对贡献率最大,其次是烯烃,烷烃最小.C3、C4类烯烃和苯系物是厦门城区和郊区活性较高的物种,对臭氧的贡献较大.比较观测期间城区和郊区VOCs的平均MIR值可知,郊区VOCs的活性高于城区.  相似文献   

9.
超市食品容易产生异味,导致顾客产生不愉悦的嗅觉感受,这些异味的主要成分是挥发性有机物(Volatile Organic Compounds,VOCs).为确定超市异味VOCs化学成分及其来源,对超市开展现场采样检测.本研究采用3种不同的VOCs采样检测方法:吸附管采样-热脱附-气相色谱/质谱法(TD-GC/MS)、气袋采样-TD-GC/MS和苏玛罐采样-气相色谱-火焰离子化检测/质谱法(GC-FID/MS),对超市室内空气中的VOCs进行采样检测比较.结果表明,苏玛罐采样法的总挥发性有机物(Total Volatile Organic Compounds,TVOC)体积分数为63.3×10-9~86.8×10-9,共检测出26种VOCs,主要包括卤代烃、烷烃和苯系物,但异味贡献较小,未检测出异味较大的VOCs;气袋采样法仅检测出9种VOCs,且φ(TVOC)均小于10.0×10-9,说明气袋存在显著壁吸附效应,不适用于本次实验;吸附管采样法的检测结果显示,φ(TVOC)为79.5×10-9~86.1...  相似文献   

10.
长白山背景站大气VOCs浓度变化特征及来源分析   总被引:2,自引:2,他引:0  
吴方堃  孙杰  余晔  唐贵谦  王跃思 《环境科学》2016,37(9):3308-3314
挥发性有机物(VOCs)是臭氧和二次有机气溶胶的重要前体物.为研究中国东北背景地区大气中VOCs浓度和变化特征,应用苏码罐采样技术、三步冷冻浓缩和GC/MS联用技术测定了长白山大气本底站中的VOCs组成、浓度及季节变化,并利用PCA(principal component analysis)受体模型初步解析了白山大气中VOCs来源.结果表明,长白山地区TVOCs年平均浓度(体积分数)为10.7×10~(-9)±6.2×10~(-9),其中卤代烃所占比例最高,占VOCs总浓度的37%,其次是烷烃33%、芳香烃15%、烯烃15%.长白山地区TVOCs呈现明显的季节变化,变化特征为春季﹥秋季﹥夏季﹥冬季,春季大气中的TVOCs浓度显著(P﹤0.05)高于其他季节.利用主成分分析VOCs物种,提取出5个因子,分别归纳为交通源、液化石油气(LPG)、生物源、燃烧源和区域工业输送.结合HYSPLIT-4.0后向轨迹模型,分析周边区域传输对VOCs物种浓度的影响,发现来自西南向气团传输是长白山VOCs物种浓度增加的主要原因.  相似文献   

11.
金华市街道灰尘磁化率时空变化研究   总被引:1,自引:1,他引:0  
对不同时空条件下的金华市二环以内的街道灰尘样品的磁化率进行了研究.结果表明,金华市街道灰尘磁化率均值349.67×10-8 m3/kg,冬、春、夏各个季节的平均值:322.55×10-8 m3/kg、358.16×10-8 m3/kg和368.31×10-8 m3/kg,指示了其均具有磁性增强效应,且其值相近;春、夏两个季节街道灰尘磁化率的高值区分布结构相似,模型参数分析表明,区域因素为影响其值的主因;街道灰尘磁化率高值区与城区工业区大体吻合分布,工业区是主要的区域因素。  相似文献   

12.
利用臭氧监测仪(OMI)卫星反演的甲醛柱浓度产品,探讨了2005—2016年间华北五省区域对流层甲醛柱浓度的时空分布变化特征及相关的影响因子,结果表明:近12年对流层甲醛柱浓度整体呈现上升趋势,2005—2011年甲醛柱浓度呈逐渐升高趋势,最高增长达32.24×1013mole·cm~(-2),且高值区逐渐扩大.空间分布上高值区整体分布在北京、天津及周围区域,低值区分布在河北的北部、河南的南部和山东的东部区域;2012—2016年甲醛柱浓度波动较小,呈下降趋势.12年中,每年的2—4月份甲醛柱浓度出现最小值,6—8月份甲醛柱浓度出现最大值,而2005年2月份甲醛柱浓度值最小,2011年7月份甲醛柱浓度值最大.四季对流层甲醛浓度水平:夏季秋季春季冬季.风向会影响甲醛浓度的扩散方向,气温的增加导致甲醛柱浓度的升高.但12年间区域生产总值的提高、汽车保有量增加和农业秸秆焚烧是影响甲醛柱浓度增加的主导因素.  相似文献   

13.
上海市某化工区夏季典型光化学过程VOCs特征及活性研究   总被引:3,自引:0,他引:3  
本研究基于夏季某化工区外5 km处观测点O_3及VOCs在线观测结果,分析了VOCs污染及光化学反应活性特征.结果显示,西南风向的VOCs平均体积分数为63.9×10~(-9)±28.6×10~(-9),高于其他风向42%(45.0×10~(-9)±28.0×10~(-9)),不同主导风向下的VOCs特征具有一定的相似性,均以烯烃、卤代烃和烷烃为主要组分,说明化工园区局地排放和累积对观测点VOCs影响较大.主要VOCs物种的日变化都具有夜间体积分数累积增多,白天逐步降低的特征;但是异戊二烯呈现日变化较小的特征,显示其受到人为源和天然源的双重影响.西南风向的臭氧生成潜势(Ozone Formation Potential,OFP)为242.1×10~(-9),远高于其他风向的OFP(174.1×10~(-9)),而平均MIR(Maximum Increment Reactivity)则较为接近;烯烃在VOCs总OFP中的贡献比例均在70%以上,其次是芳香烃.使用乙苯和间/对二甲苯的比值来表征气团光化学反应进程,计算得到观测点西南风向VOCs消耗量为(51.7×10~(-9)±38.8×10~(-9)),烯烃和卤代烃是最主要VOCs消耗组分.  相似文献   

14.
宿迁市VOCs污染特征和来源解析   总被引:2,自引:0,他引:2  
利用2019年8-9月宿迁市4个站点的采样资料,分析了宿迁大气中挥发性有机物(VOCs)的化学组成及其时空分布特征;估算了VOCs的臭氧生成潜势(OFP);并结合PMF受体模型,开展了VOCs来源解析.结果表明,观测期间宿迁市总挥发性有机物(TVOCs)体积分数为8.6×10-9~79.4×10-9,平均体积分数为26.9×10-9,浓度水平较低.VOCs质量浓度表现为乡镇工业区(宿迁技师学院:(29.8±18.4)×10-9) > 城郊工业区(生态化工园:(28.4±20.6)×10-9) > 城市住宅区(宿迁中学:(22.6±11.5)×10-9) > 城市商业区(市供电局:(22.3±15.1)×10-9).各采样点4种组分(烷烃、烯烃、乙炔及芳香烃)日均浓度变化较为一致,且均表现出较为明显的周末效应.宿迁市典型污染物为C2~C5烷烃、乙炔、乙烯、甲苯,间/对-二甲苯,不同采样点的关键组分基本相同,表明VOCs的来源比较稳定.OFP计算表明芳香烃和烯烃是臭氧最大贡献源.特征量比值分析发现,观测期间宿迁市VOCs有明显老化现象.源解析表明交通排放、溶剂涂料和工业过程是宿迁市VOCs的主要来源.  相似文献   

15.
根据2000~2002年南充市区SO2、NO2、TSP浓度的监测数据,运用综合大气质量指数的分析方法,对南充市区的气质量进行分析评价。结果表明:SO2、TSP是南充市区的主要污染物,NO2的污染相对较轻。3种污染物年内浓度变化均为:冬>春>秋>夏;年间浓度变化:SO2为冬>秋>春>夏,NO2、TSP为冬>春>秋>夏,并提出了一些相关的建议。  相似文献   

16.
挥发性有机化合物(VOCs)是臭氧和颗粒物等的重要前体物,对空气质量的影响尤为显著.为研究连云港市VOCs的组分特征和来源,选择4个国控点开展春、夏和秋季典型日的VOCs采样和分析,计算VOCs不同组分对臭氧生成的影响,利用正交矩阵因子分解法(PMF)解析VOCs的来源.结果表明,春季VOCs浓度为27.46×10~(-9)~40.52×10~(-9),夏季为45.79×10~(-9)~53.45×10~(-9),秋季为38.84×10~(-9)~46.66×10~(-9);含氧化合物的浓度占比为41%~48%,在各个季节均为最高,浓度水平较高的VOCs物种是丙酮、丙烯醛和丙醛等,异戊二烯的浓度在夏季较高;一般而言VOCs浓度09:00高于13:00,其中丙烯醛、乙烯和二氯甲烷的变化较大;含氧化合物的臭氧生成潜势(OFP)最高,其次是芳香烃和烯烃类,烷烃的OFP最小,OFP较高的VOCs物种是丙烯醛、丙烯和乙烯等;影响连云港市VOCs的来源主要有工业源(49%)、溶剂使用源(23%)、交通源(14%)、涂料使用源(10%)和天然源(4%).需重点关注连云港市VOCs中浓度水平和OFP均较高的含氧化合物,重点控制工业源对VOCs的影响.  相似文献   

17.
滨海城市气溶胶中颗粒态汞的分布特征   总被引:3,自引:2,他引:1  
张福旺  赵金平  陈进生  徐亚 《环境科学》2010,31(10):2273-2278
与气溶胶颗粒相结合的汞,即颗粒态汞,不仅对人体健康及生态环境产生一定的危害,而且在汞的生物地球化学过程扮演重要角色.以我国东南滨海城市厦门市为研究对象,采集郊区、居民区、旅游区、工业区和背景区四季(2008年10月~2009年8月)的PM2.5、PM10和TSP样品,基于塞曼原子吸收法的俄罗斯LumexRA-915+汞分析仪对大气不同粒径颗粒物中颗粒态汞进行了测试.结果表明,厦门市大气不同粒径颗粒物中汞的含量均表现为冬、春两季的浓度明显高于夏、秋两季;春、夏、秋、冬四季细颗粒物(PM2.5)中的含量分别为(51.46±19.28)、(42.41±12.74)、(38.38±6.08)和(127.23±33.70)pg/m3.不同粒径颗粒物中汞主要分布在PM2.5中,占到颗粒物态汞的42.48%~67.87%,表明细粒子富集汞的能力较强.不同功能区颗粒态汞的浓度分布趋势为背景区居民区旅游区工业区郊区,说明颗粒态汞浓度的空间分布特征与采样点的环境功能密切相关.总体而言,滨海城市大气颗粒态汞含量较低;PM2.5对颗粒态汞的富集明显高于PM10和TSP,表明对颗粒态汞的控制应集中在细颗粒物污染上.  相似文献   

18.
本文利用天津市南开大学津南校区大气环境综合观测站的臭氧及其前体物(VOCs和NOx)、气象参数等在线监测仪器,获取了2018年夏季(6~8月)小时分辨率的数据信息;分析臭氧及其前体物的相互关系及变化特征;根据光化学年龄计算出VOCs的初始浓度对其日间(06:00~24:00)VOCs体积分数的光化学损耗进行修正;将初始体积分数和直接监测的VOCs体积分数分别纳入PMF模型进行人为源的来源解析.结果表明,夏季天津O3的平均体积分数为(41.3±25.7)×10-9,而VOCs的平均体积分数为(13.9±12.3)×10-9,其中烷烃的平均体积分数(7.0±6.8)×10-9明显高于其它VOCs物种.烷烃中浓度较高的物种分别为丙烷和乙烷,占总烷烃浓度贡献的47%.夏季O3的生成潜势(OFP)平均值为52.1×10-9,其中烯烃的OFP值最高,对于TVOCs臭氧生成潜势的贡献达到57%.VOCs日间光化学损耗量计算结果表明,烯烃日间损耗占VOCs损耗总量的75%.基于初始浓度解析的VOCs来源分别为:化工排放和溶剂使用(25%)、机动车尾气(22%)、燃烧源(19%)、天然气和液化石油气(19%)和汽油挥发(15%).相比于直接将监测浓度纳入PMF解析的结果,化工排放和溶剂使用贡献百分占比下降4%,机动车尾气贡献百分占比下降5%.利用PMF源解析结果结合OFP分析不同源类对臭氧污染的相对贡献,基于初始体积分数数据的结果显示,贡献最高源类为化工排放和溶剂使用(26%).与利用直接监测数据的解析结果相比,化工排放和溶剂使用的OFP值降低7%,天然气和液化石油气的OFP值明显降低13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号