首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
在气中的氧化亚氮(N_2O)浓度每年以0.3%的比率增加,而且这种N_2O在大气中极其稳定,其平均寿命约达150年,从对流层进入平流层。在平流层这种N_2O起化学反应并破坏一部分臭氧,使到达表地紫外线量增加。同二氧化碳、甲烷一样,N_2O浓度增加产生的温室效应也会使地表温度升高。 为评价氮气给环境造成的影响,最重要的是获得由于施肥引起土壤产生N_2O的可靠数据。为此,将大气中微量的N_2O进行浓缩,并用送带超声波检测器或电子捕获检测器(ECD)的气相色谱仪进行检测,以此来确立N_2O的微量含量。超声波检测仪分析法的关键在于把1升大气样品中的N_2O和Xe捕获到以冻结戊  相似文献   

2.
田琳琳  王正  朱波 《环境科学》2018,39(12):5391-5399
农业源溪流与农田生态系统有着紧密的水文连接,其会随着农业非点源氮(N)污染的加剧而成为重要的N汇和氧化亚氮(N_2O)间接排放源.本研究采用静态暗箱-气相色谱法于2015年6~9月(所研究区域的雨季)原位测定了长江上游紫色土丘陵区农业源溪流的N_2O间接排放通量.结果表明,农业源溪流雨季中N_2O平均排放通量为12. 8μg·(m~2·h)~(-1),接近其所在区域内同季节农田的N_2O直接排放水平,是重要的农业N_2O间接排放源.该农业源溪流中N_2O间接排放系数值(EF5r=0. 01%)远低于IPCC的建议值(0. 25%)和重新计算的全球平均值(0. 20%),然而,全球EF5r的现有数据量仍十分有限、且有较大的空间差异,应加强对此类N_2O间接排放的研究,从而进一步修正EF5r的精度、减少N_2O间接排放估算的误差.本研究的N_2O间接排放通量与水中NO-3-N浓度正相关,反硝化是N_2O的主要产生过程.雨季中较强的降雨(如连续降雨日内降雨 9 mm)可促进溪流中NO-3-N浓度在雨后短期内急剧升高,进而激发水中N_2O间接排放通量的明显增加.  相似文献   

3.
山西省人为源VOCs排放清单及其对臭氧生成贡献   总被引:4,自引:2,他引:2  
闫雨龙  彭林 《环境科学》2016,37(11):4086-4093
根据统计年年鉴中主要的人为挥发性有机物(VOCs)排放源的行业活动水平和文献中查阅到的VOCs排放因子和组分特征,计算了山西省2013年的人为源VOCs的排放量,计算了臭氧生成潜势.计算结果显示山西省2013年人为源VOCs排放量为72.37万t,最主要的排放行业是工业排放源和移动源,分别占总排放量的36.47%和24.28%;在工业源中,焦炭生产和化学品生产的VOCs排放量分别为19.06万t和3.88万t,分别占工业排放行业总排放量的72.22%和14.72%,是工业排放行业中最大的排放源;2013年山西省各个排放源排放的臭氧前驱VOCs共43.59万t,所产生的臭氧生成潜势总量为176.99万t,对总臭氧生成潜势贡献最大的是移动源、燃烧源和工业排放,分别占总臭氧生成潜势总量的40.35%、26.43%和24.95%.结果表明:煤化工行业VOCs排放量显示了山西省独特的以煤为主的单一化、重型化的产业结构;机动车保有量快速增长导致了机动车的VOCs排放量巨大;移动源和工业排放源排放的VOCs所产生的臭氧生成潜势巨大.总之控制山西省的VOCs排放及其带来的臭氧污染应主要关注于控制工业排放和机动车排放.  相似文献   

4.
利用湖北省超级站2019年10~11月的臭氧、NOx(=NO+NO2)和102种VOCs物质的小时数据分析了军运会期间臭氧污染变化;基于DSMACC箱型模式模拟不同VOCs和NOx浓度下臭氧的光化学生成敏感性;采用PMF模型对前体物VOCs进行源解析,并估算不同源类的臭氧生成潜势.结果显示,军运会保障前臭氧日最大8小时浓度(最大MDA8:219.51μg/m3)超过国家二级标准,保障期臭氧MDA8浓度(135.11μg/m3)明显下降,保障后浓度回升(140.98μg/m3).军运会保障前中期臭氧浓度的差异受气象条件影响更明显,而保障后臭氧浓度的上升主要是因为前体物浓度的大幅增加.根据DSMACC模拟的EKMA曲线,武汉市军运会期间臭氧的光化学生成主要受VOCs浓度变化的影响.进一步对VOCs进行源解析,结果显示,保障前VOCs对臭氧生成贡献较大的源类是燃烧源、石油化工和机动车,分别占23.0%、22.8%和22.5%;保障期间VOCs的主要来源是机动车(38.4%)和燃烧源(25.5%);保障后则主要是石油化工(32.6%)和燃料挥发(25.7%).三个阶段对比发现,军运会的保障方案对石油化工源减排效果明显,但对机动车和燃烧源排放的限制效果并不显著.武汉市应该更注重对燃烧、燃料挥发和机动车排放的治理.  相似文献   

5.
据报导,一些研究人员认为增加施肥量会提高空气含氮量,从而加以指责。Arvin R Mosier和David S.Schimel两位学者最近在1991年出版的〈化学工业〉杂志上发表文章,指出农业氮对大气中的甲烷和一氧化二氮(N_2O)有影响。作者注意到大气中的CO_2、水蒸气、含氯氟烃、甲烷、一氧化二氮和臭氧都能使大气变暖。CH_4和N_2O主要发生于土壤,两者的发生率正在迅速增加,每年约增加0.3~1.0%。。这两种气体在致使地  相似文献   

6.
二氧化碳(CO_2)、氧化亚氮(N_2O)、甲烷(CH_4)、氟氯烃类(CFCs,即氟里昂气体)、对流层中的臭氧(O_3,即产生光化学雾的物质)等,在大气中存在的量尽管很少,但具有在地表附近将太阳能以热的形式截留下来的作用。这种作用称作“温室效应”,具有这种作用的气体,即上述的CO_2、N_2O、CH_4、CFCs、O_3等称作温室气体。当前,温室气体在大气中的浓度虽然很低,但观测到其浓度有增加的趋势(见表1)。而这种增加已使地表及包围地球的大气下层逐渐变暖,其结果很可能使气候发生变化。  相似文献   

7.
柴油/甲醇二元燃料发动机的非常规排放特性研究   总被引:4,自引:2,他引:2  
在一台电控单体泵增压中冷柴油机上,利用FTIR研究柴油/甲醇二元燃料发动机不同甲醇替代率下的非常规排放特性.结果表明,柴油/甲醇二元燃料燃烧模式下的非常规排放物甲醛、未燃甲醇、1,3-丁二烯及N_2O的比排放与纯柴油模式相比均有不同程度的增加,且均随着甲醇替代率的增加而增加;甲醛、未燃甲醇及N_2O的比排放随着负荷的增加逐渐降低;随着转速的增加,未燃甲醇的比排放趋势相差不大,排放量也无明显差别;CO_2的比排放随着甲醇替代率的增加而下降.  相似文献   

8.
快速城市化区河流温室气体排放的时空特征及驱动因素   总被引:4,自引:3,他引:1  
河流是大气温室气体重要的排放源,近十多年来全球城市化导致河流生态系统各要素发生改变,对河流水体温室气体排放产生影响.为研究快速城市化区不同土地利用方式下河流温室气体排放的时空特征及其影响因素,采用薄边界层模型法,于2014年9月(秋季)和12月(冬季)及2015年3月(春季)和6月(夏季)的晴天对重庆市区内梁滩河干、支流水体pCO_2、CH_4、N_2O溶存浓度进行监测.结果表明,梁滩河干、支流水体pCO_2范围为(23. 38±34. 89)~(1395. 33±55. 45) Pa、CH_4溶存浓度范围(65. 09±28. 09)~(6 021. 36±94. 36) nmol·L~(-1)、N_2O溶存浓度范围为(29. 47±5. 16)~(510. 28±18. 34)nmol·L~(-1); CO_2、CH_4和N_2O排放通量分别为-6. 1~786. 9、0. 31~27. 62和0. 06~1. 08 mmol·(m~2·d)~(-1);流域水体温室气体浓度空间格局与快速城市化带来的污染负荷空间梯度吻合,干流温室气体浓度与通量从上游向下游均呈先增加后降低,在城市化速度最快的中游出现峰值,其中城市河段CO_2和CH_4浓度约为非城市河段的2倍,同时支流水体自上游农业区向下游城市区呈显著增加;由于受到降雨、温度、外源输入的综合影响,河流CO_2排放通量呈秋季冬季夏季春季的季节模式,CH_4排放通量春季最高夏季最低,N_2O排放通量季节差异不显著.流域水体碳、氮含量均较高,水体CO_2的产生和排放不受生源要素限制,但受水温、pH、DO、叶绿素a等生物代谢因子影响; CH_4的产生和排放受水体碳、氮、磷含量和外源污水输入的共同驱动; N_2O的产生和排放主要受高N_2O浓度的城市污水排放影响.本研究认为流域快速城市化加快了河流水体温室气体排放,形成排放热源,因此城市河流温室气体排放对全球河流排放通量的贡献可能被忽视,在未来研究中应受到更多关注.  相似文献   

9.
简讯     
大气中 N_2O 浓度上升后,既可使同温层中臭氧(O_3)浓度降低,又可使地球表面气温变暖,引起气候变化。所以,N_2O浓度上升对增加阳光对地面的紫外线辐射与气候变化都会引起不良影响。在过去100年(1880~1980年)中,排入大气中的N_2O,已由1880年的9×10~3吨/年(以 N计),增加至1980年的14×10~6吨/年(以 N  相似文献   

10.
温室气体二氧化碳的捕集和贮存   总被引:1,自引:0,他引:1  
任仁 《环境导报》2001,(2):49-50
地球大气中C煤和其他温室气体浓度的上升增强了自然温室效应,导致气候变化,目前,矿物燃料燃烧排放的CO2大约为23Gt/a。  相似文献   

11.
二氧化碳能够让阳光的短波辐射渗过大气层,但能吸收地球表面散发出来的长波辐射。因此,大气中的二氧化碳能使地球表面变暖,产生温室效应。大气中的温室气体除二氧化碳外,还有水蒸汽、甲烷、氟氯烃(CFCs)、一氧化二氮(N_2O)与对流层中的臭氧(O_3)。大气中的这几种气体浓度上升后,会使地球表面气温变暖,并在下一个世纪中引起全球气候变化。  相似文献   

12.
研究了夏季杭州市主要类型道路(隧道、快速道路、主干道和支路)空气中挥发性有机物的污染特征,以及2010年11月—2011年7月间快速道路空气中VOC的季节变化规律.分析结果表明,杭州市道路空气中VOC浓度显著大于风景区内VOC浓度,隧道浓度最高(828.4μg·m-3),其它道路空气中VOC浓度随着车流量减少而降低.源解析结果发现道路空气中VOC的主要贡献者为机动车排放,但同时也受到溶剂挥发、煤或生物质燃烧的影响,风景区内VOC则受煤或生物质燃料燃烧的影响更大.快速道路空气中VOC浓度和反应活性由机动车排放、植物排放和气象条件共同决定,呈现夏〉秋〉冬〉春的季节变化特征.机动车排放的烯烃和芳香烃是道路空气中主导的活性VOC物种,说明机动车排放是杭州市大气反应活性的最大贡献者.此外,在夏、秋季节,植被排放的异戊二烯显著的增强了道路空气中VOC的反应活性.  相似文献   

13.
李栩婕  施晓雯  马嫣  郑军 《环境科学》2020,41(2):537-553
2017年12月至2018年11月在南京北郊采集了大气PM_(2.5)样品,对其中的有机胺、主要水溶性离子、有机碳和元素碳进行了定量分析.共测定南京北郊大气PM_(2.5)中5种有机胺:甲胺、乙胺、二甲胺、三甲胺和苯胺.有机胺年平均总浓度为(54. 2±29. 2) ng·m~(-3),其中最丰富的物种为二甲胺[年均值:(20. 2±13. 7) ng·m~(-3)],其次为甲胺[年均值:(13. 1±6. 3)ng·m~(-3)]、三甲胺[年均值:(8. 6±4. 1) ng·m~(-3)]、乙胺[年均值:(6. 3±4. 1) ng·m~(-3)]和苯胺[年均值:(5. 9±3. 9) ng·m~(-3)],有机胺总浓度呈现出明显的季节变化,表现为夏季秋季春季冬季.污染天有机胺的浓度大于清洁天,主要是受大气颗粒物酸性影响大气有机胺气/粒转换所致,并且大气颗粒物酸性也是导致夏季高温条件下颗粒态有机胺仍高于其它季节的另一原因.在新粒子生长天,发现有机胺的浓度会有所增加. PMF法溯源结果显示南京北郊大气PM_(2.5)中主要有6种有机胺排放源:即工业源、农业源、生物质燃烧、机动车排放、二次源和道路扬尘.其中甲胺、乙胺主要来源于二次源和机动车排放;二甲胺、三甲胺主要来源于生物质燃烧、二次源和机动车排放;苯胺主要来源于工业排放和生物质燃烧.有机胺的来源具有显著的季节差异,春季秋季道路扬尘源占比较高,夏季二次源为有机胺主要的污染源,冬季机动车排放源和生物质燃烧源有一定提升.而有机胺的昼夜差异并不明显,二次源、机动车排放源以及生物质燃烧源是3个主要影响因素.  相似文献   

14.
利用气相色谱-电子捕获检测器法(GC-ECD)测量大气中氧化亚氮(N_2O)浓度是目前广泛使用的方法,但ECD分析N_2O时存在线性范围较窄的缺点,因此,标气数量和定量方式是决定分析结果的关键因素.基于此,本文对比分析了单点线性校正法(S)、多点线性拟合法(D)、单瓶标气近似校正法(SA)、单瓶标气比值校正法(SC)对N_2O检测分析结果的差异.结果表明,SA定量相对误差最小,对测试使用的6瓶标气定值平均误差为0.09×10~(-9).根据本底大气N_2O观测精度要求,以及我国大气N_2O浓度变化范围较大的特征,推荐选用SA法对大气中N_2O浓度进行定值.依据所选方法对黑龙江龙凤山本底站大气N_2O浓度进行观测(2015年1—12月),结果显示,黑龙江龙凤山站大气N_2O浓度最高值出现在4—5月,平均值超过330×10~(-9).该站大气N_2O浓度主要受人为活动排放的影响.  相似文献   

15.
为研究黄石市大气挥发性有机物(VOCs)污染特征、臭氧生成潜势及来源,该文于2018年7月-2019年4月,在黄石市城区使用苏玛罐采集大气VOCs样品,利用气相色谱质谱/氢火焰离子检测器(GC-MS/FID)测定71种VOCs。结果表明,黄石市总挥发性有机物(TVOCs)平均浓度为(24.1±9.01)×10~(-9)(体积浓度),季节性变化趋势为冬季高夏季低。黄石市大气VOCs的平均臭氧生成潜势(OFP)为128μg/m~3,对OFP贡献最大的物种是乙烯,其值为21.2μg/m~3。特征物种比值显示,黄石市大气存在一定老化现象,异戊烷和正戊烷可能受到燃料燃料蒸发和机动车排放影响,甲苯和苯受机动车尾气影响较大。正交矩阵因子模型的解析结果显示VOCs的主要来源为机动车排放源(30.44%)、燃料挥发源(24.48%)、燃烧源(22.58%)、石油化工源(9.26%)、溶剂使用源(8.06%)和植物排放源(5.18%)。  相似文献   

16.
煤以及烃类燃烧产生的烟气中,都含有相当数量的CO_2。这是排入大气中CO_2的重要来源。在目前的能源结构情况下,由烟气排入大气的CO_2量,可以说是逐日增加。人们耽心由此形成的过量温室效应,将影响人类生存的环境。另外,石油化工厂、合成氨厂、天然气田有不少脱除CO_2的工业装置。其中,一部分可用于制造尿素、碳酸氢铵、纯碱等产品,但也有不少CO_2就地排放,其集中排放浓度高达90%以上。遍布各地的石灰窑,排放的CO_2浓度也高达20%~40%。既浪费了资源,又污染了环境。 70年代,发达国家对生产装置空放CO_2制  相似文献   

17.
中国对流层二氧化硫光化学氧化过程的数值研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用一个三维非静力区域大气化学输送模式与中尺度气象模式MM5相连接构成一个数值模拟系统,模拟了中国地区对流层臭氧与其前体物的分布以及二氧化硫转化为硫酸盐的过程,模式扬地面源排放、大气输送和扩散、干沉积、气相化学反应和云雨过程。结果表明:日间,O3浓度主要由NOx和NMHC的源排放和光化学反应过程支配,大气辐射是光化学反应强弱的决定因子,其强度可使SO2、O3和SO4^2-的生成浓度呈现不同的日变化和季节变化,结果表明高浓度的O3对二氧化硫转化为硫酸盐的化学过程有很大的促进作用,然而,这种作用受NMHC浓度的影响很大,较高浓度的NMHC使O3浓度上升,但同时增加了对OH等自由基的消耗,使SO2的转化率降低。  相似文献   

18.
我国机动车排放VOCs及其大气环境影响   总被引:13,自引:12,他引:1  
挥发性有机化合物(volatile organic compounds,VOCs)作为大气中主要污染物之一,是O3和二次有机气溶胶(secondary organic aerosol,SOA)的重要前体物.为全面了解我国城市机动车排放VOCs对空气质量的影响,本文系统介绍了我国部分城市大气中VOCs的源解析最新成果,并分车型、分燃料综述了我国机动车VOCs的排放因子、成分谱及其对二次污染的贡献,以期为未来机动车VOCs排放和控制提供数据和理论支持.研究发现,机动车是我国城市大气VOCs的最大源,平均贡献率为36.8%;摩托车和轻型汽油车是主要排放车型.机动车尾气排放VOCs对城市O3和SOA生成都有重要贡献,随着排放标准提升和运行工况改善,机动车排放因子和臭氧生成潜势(ozone formation potentials,OFPs)明显降低,成分谱以芳香烃和烯烃等活性组分为主,对二次污染的贡献较大.  相似文献   

19.
基于对成都平原稻田生态系统CO2、CH4和N2O排放的原位观测,应用碳税法、工业制氧成本法和造林成本法对施氮情况下稻田生态系统气体调节的环境效益进行评价。研究表明,施氮情况下,稻田温室气体排放产生的环境负效益增加14.4%,但由于施氮提高了水稻生物量,使稻田生态系统固定CO2和释放O2的环境正效益提高26.2%,因而稻田生态系统通过自身气体调节功能产生的环境效益提高47.8%。所以,施氮通过提高稻田生态系统自身气体调节功能,能够降低大气中温室气体的浓度,抑制温室效应的发生,而水稻在调节稻田气体,减轻温室效应中起到主要作用。  相似文献   

20.
湿地是温室气体氧化亚氮(N_2O)重要的源或汇,盐碱湿地作为湿地的重要组成部分,研究其N_2O排放对于探究盐碱湿地N_2O产生的硝化作用机制及评估其在温室效应中的作用具有重要意义.本文对代表性盐碱湿地——扎龙芦苇沼泽湿地生长季的N_2O释放量及相关环境因子进行了研究.结果表明,生长季N_2O通量呈波动性下降趋势,最大值出现在7月中旬,平均排放通量为(37. 49±15. 75)μg·(m2·h)-1,表现为N_2O的释放"源". N_2O通量与不同深度土层温度存在显著正相关关系(P 0. 05),且上层土温对N_2O排放的影响程度高于深层土;淹水期间N_2O通量与积水深度呈显著负相关关系(P 0. 05);且土壤TOC和TN含量较低,N_2O通量与0~40 cm土层NH+4-N含量呈显著正相关关系(P 0. 05),而与NO-3-N含量没有关系,硝化作用程度要比反硝化强;此外,土壤氨氧化菌活性与0~20 cm土层温度存在极显著正相关关系(P 0. 01),且N_2O通量与氨氧化菌活性也呈极显著的线性正相关关系(P 0. 001),表明盐碱湿地的N_2O释放受硝化作用影响巨大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号