首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
采用自下而上的四种不同清单编制方法(以人口、就餐次数、用油量和灶头为核算基准),评估了长春市辖区2014年不同餐饮活动(家庭餐饮、社会餐饮和食堂餐饮)的大气污染物PM2.5和VOCS的排放量,编制了餐饮源大气污染物PM2.5和挥发性有机物(VOCS)排放清单,并分析了餐饮源排放的时空分布特征.结果表明:2014年长春市辖区餐饮源PM2.5总排放量183~770t,VOCS总排放量9~586t;长春市辖区餐饮源PM2.5和VOCS的最大排放源是家庭餐饮,其贡献率分别为74%~81%和28%~78%,食堂餐饮的贡献率分别为8%~22%和3%~26%,社会餐饮的贡献率分别为2%~17%和2%~69%;排放强度空间分布表明,长春市辖区餐饮源污染物在排放区域上:朝阳区 > 南关区 > 绿园区 > 二道区 > 宽城区 > 双阳区;时间变化特征显示,日变化峰值为07:00~08:00,11:30~12:30,18:00~20:00;周变化中周三、周六和周日排放量较大;季节变化中,冬季排放强度高于其他季节,其中十二月份贡献率最大(9.98%);不同方法计算的大气污染物排放清单中,以人口为基准的不确定性最大,VOCS的不确定性为302%,以用油量为基准的不确定性最小,PM2.5和VOCS的不确定性分别为31%和61%,可以作为区域餐饮源大气污染物清单推荐方法.未来的工作将侧重于典型餐饮源本地排放因子的测定,从而有效减少排放清单的不确定性.  相似文献   

2.
为准确掌握荆州开发区大气污染物排放状况,该研究采用排放因子法,基于资料收集与实地调查结合的方式获取活动水平、文献调研选取排放系数,结合ArcGIS平台,建立了荆州开发区2019年1 km×1 km 10类排放源9种大气污染物排放清单。结果表明:开发区SO2、NOx、CO、VOCs、NH3、PM10、PM2.5、BC和OC的排放量分别为850.4、2 407.1、4 584.0、4 848.3、107.7、8 602.1、4 485.3、57.8和159.6 t。移动源是NOx的主要来源,占NOx总排放量的43.8%。固定燃烧源是CO的主要来源,占CO总排放量的81.5%。工艺过程源是SO2、VOCs、PM10、PM2.5和OC的主要来源,分别占SO2、VOCs、PM10、PM2.5和OC总排放量的50.9...  相似文献   

3.
根据调查收集到的2015年四川省工程机械、农业机械、铁路机车、船舶和民航飞机的保有量、活动水平等数据,采用"排放因子法"计算了非道路移动源大气污染物排放量,分析了2015四川省非道路移动源的尾气污染排放特征,并建立了3km×3km的网格化排放清单.结果表明,2015年四川省非道路移动源排放的PM10为1.38×104t,PM2.5为1.25×104t,NOx为1.83×105t,THC为2.98×104t,CO为1.21×105t.工程机械对污染物的贡献率相对较高,占比达到70%;其次为农业机械,对NOx和PM的贡献占比分别达到15%.工程机械和农业机械的排放主要集中在夏季和秋季,而飞机、铁路机车和船舶的时间变化较不明显;而从空间分布来看,高排放源主要分布于成都平原地区和川南地区.  相似文献   

4.
基于环境统计数据,采用排放因子法建立2020年京津冀地区燃煤工业锅炉县级大气污染物排放清单.结果表明,2020年京津冀地区燃煤工业锅炉常规大气污染物SO2、NOx、颗粒物(PM)、PM10、PM2.5排放量分别为6351,7399,2952,825,399t.,其中PM10和PM2.5分别占PM排放总量的27.9%和13.5%.重金属Hg、Pb、Cd、Cr、As的排放量分别为197.9,1391.3,32.0,1214.2,362.4kg.65t/h及以上燃煤工业锅炉为主要的排放贡献源,各类污染物的排放量占京津冀地区工业锅炉各类污染物排放总量的比重为51.1%~81.2%,是污染控制及监管的重点.河北省承德市、唐山市、张家口市为污染物排放量最大的3个城市,3个城市各类污染物排放量占京津冀地区工业锅炉各类污染物排放总量的14.6%~71.9%.污染物排放强度大的区域主要集中在天津市、河北省廊坊市、唐山市的一些区县.  相似文献   

5.
基于利用AMDAR数据确定大气混合层高度进而对飞机不同工作状态下的时间进行修正的计算方法,核算了2017年华北地区6座典型机场大气污染物排放量.结果显示,6座机场NOx、CO、VOC、SO2与PM2.5的排放总量分别为21504.2,7074.8,1424.0,1283.6和323.2t.飞机源NOx、CO、VOC与SO2的排放量远高于机场内其他污染源,而对PM2.5的排放贡献相差较小.HC与CO的排放主要集中在滑行阶段,占比分别为90.6%与90.2%,而NOx、SO2与PM2.5的排放主要集中在爬升阶段,排放占比分别为58.9%、38.7%和43.5%.6座机场1月份污染物排放量较低,在8月份达到峰值.基于本研究建立的天津滨海国际机场大气污染物排放清单,利用WRF-CAMQ模型研究机场排放对周边区域PM2.5浓度的影响.结果表明机场区域小时最大贡献浓度为3.24μg/m3;距离机场5km处的年均贡献浓度与小时最大贡献浓度分别为0.08和2.84μg/m3.  相似文献   

6.
东北地区农业源一次颗粒物排放清单研究   总被引:3,自引:0,他引:3  
采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.  相似文献   

7.
以黑龙江省为例,采用排放因子法计算了2016年秸秆露天焚烧污染物排放清单,分析了污染物的时空分布特征.结果表明,黑龙江省秸秆露天焚烧各污染物排放量为:CO2 1314.09万t、CO 41.92万t、CH4 3.77万t、NMVOCs 8.35万t、NH3 0.65万t、BC 0.44万t、OC 3.13万t、SO2 0.50万t、NOX 3.28万t、PM10 8.81万t、PM2.5 10.14万t.在95%的置信区间确定了排放清单的不确定性,不确定性范围为NOX的±86%的低值到CO的±187%的高值.通过可靠性分析推断,本文的排放清单是合理的.玉米和水稻秸秆露天焚烧对同种大气污染物的贡献高于其他作物秸秆.大气污染物排放高值区位于黑龙江省西部和东部,污染物排放的时段在全年范围内具有明显的双峰特征.秸秆露天焚烧率的下降能有效促进大气污染物的减排,且农垦地区集约化和规模化的管理模式能有效控制秸秆露天焚烧.  相似文献   

8.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

9.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

10.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

11.
珠江三角洲非道路移动源排放清单开发   总被引:46,自引:18,他引:28  
根据收集到的珠江三角洲非道路移动源活动水平数据,采用适合各类非道路移动源污染物排放量的估算方法和排放因子,建立了珠江三角洲地区2006年非道路移动源排放清单.结果表明,珠江三角洲地区2006年非道路移动源排放SO2为6.52×104t,NOx为1.24×105t,VOC为4.54×103t,CO为2.67×104t,PM10为4.51×103t.其中船舶为最大的SO2、NOx、CO和PM10排放贡献源,分别占非道路移动源排放总量的96.4%、73.8%、39.4%和50.5%.在船舶排放源中,SO2、NOx、VOC、CO和PM10排放量的89.8%、81.8%、77.3%、79.5%和81.7%来自货轮和散装干货船.非道路移动源已成为该地区第三大SO2和NOx排放贡献源,分别占珠江三角洲大气污染源SO2和NOx排放总量的8.6%和13.5%.  相似文献   

12.
天津市2017年移动源高时空分辨率排放清单   总被引:5,自引:5,他引:0  
移动源已成为城市地区大气污染的主要贡献源.已有研究多关注道路移动源(机动车)或非道路移动源(工程机械、农业机械、船舶、铁路内燃机车和民航飞机)中单一源类的排放,欠缺对移动源总体排放特征的把握.本研究提出了移动源高时空分辨率排放清单的构建方法,据此建立了天津市2017年移动源排放清单,并分析其排放构成与时空特征.结果表明,天津市移动源CO、VOCs、NOx和PM10的排放量分别为18.30、6.42、14.99和0.84万t.道路移动源是CO和VOCs的主要贡献源,占比分别为85.38%和86.60%.非道路移动源是NOx和PM10的主要贡献源,占比分别为57.32%和66.95%.从时间变化来看,移动源所有污染物排放在2月均为最低,CO和VOCs在10月排放最高,而NOx和PM10则在8月排放最高.节假日(如春节和国庆节等)对移动源排放的时间变化影响显著.从空间分布来看,CO和VOCs排放主要集中于城区和车流量大的公路(高速路和国道)上,NOx和PM10在城区与港区均具有较高排放强度.污染物的空间分布差异是由其主要贡献源的空间位置决定的.本研究可为天津市大气污染的精细化管控和空气质量模拟提供数据支撑,同时可为其他地区移动源排放清单的建立提供方法参考.  相似文献   

13.
承德市大气污染源排放清单及典型行业对PM2.5的影响   总被引:3,自引:1,他引:2  
陈国磊  周颖  程水源  杨孝文  王晓琦 《环境科学》2016,37(11):4069-4079
以承德市为研究对象,基于拉网式实地调查,获得了该地区2013年各类典型行业污染源详细的活动水平数据,以大气污染物排放清单编制指南为参考,辅以排放因子研究的系统梳理,建立了2013年承德市各行业区县分辨率大气污染源排放清单,并结合人口、路网、土地利用等数据进行了1 km×1 km网格分配.在此基础上建立气象-空气质量模型系统(WRFCAMx),应用颗粒物来源识别技术(PSAT),选取2013年典型季节代表月1、4、7、10月,针对承德市电力、建材、冶金等典型行业对PM_(2.5)的影响进行了定量评估.结果表明,2013年承德市SO_2、NO_x、TSP、PM_(10)、PM_(2.5)、CO、VOCs、NH_3的总排放量分别为81 134、72 556、368 750、119 974、51 152、1 281 371、170 642、81 742 t.工业源是SO_2、NO_x、CO、VOCs的主要排放源,分别占总排放量的89.5%、51.9%、82.5%和45.6%,NO_x的主要排放源还包括道路移动源和非道路移动源,分别占总排放量的26.7%和10.8%;TSP、PM_(10)、PM_(2.5)的主要排放源是无组织扬尘,分别占总排放量的76.7%、65.6%、46.5%;畜禽养殖、化肥施用是NH_3的主要排放源,分别占总排放量的67.1%、15.8%.数值模拟结果表明,无组织扬尘、其他行业、冶金、锅炉行业对环境PM_(2.5)影响较大,浓度贡献分别为23.1%、20.6%、13.3%和11.2%,制定具体控制措施时应得到重点关注.  相似文献   

14.
长三角区域非道路移动机械排放清单及预测   总被引:6,自引:5,他引:1  
黄成  安静宇  鲁君 《环境科学》2018,39(9):3965-3975
基于长三角典型城市非道路移动机械实地调查成果,结合长三角各城市非道路移动机械相关指标现状及变化趋势,建立了长三角三省一市非道路移动机械大气污染源排放清单,并开展了2005~2025年区域非道路移动机械保有量、燃油消费量及污染物排放量预测.2014年长三角非道路移动机械总量约为8.23×106台,柴油消费量约9.95×106t,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别为5.5×10~3、4.9×10~5、7.6×10~5、1.1×10~5、2.9×10~4和2.7×10~4t,农用机械占长三角机械总量的93%,CO和VOCs排放贡献分别为88%和77%;建筑及市政工程机械的NO_x和PM_(2.5)排放贡献较为突出,分别占49%和35%.长三角中部和北部城市机械排放贡献相对突出.2005~2014年间,长三角地区非道路移动机械保有量、油耗及排放增幅均相对较快,预计到2020和2025年,区域非道路移动机械总量增速明显放缓,柴油消费量分别比2014年增加2%和8%.到2020年,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别比2014年下降97%、10%、3%、10%、11%和11%;到2025年分别下降97%、16%、3%、15%、21%和21%.预计未来长三角区域非道路移动机械排放将呈现逐年下降趋势,但相比机动车降幅仍相对较小,其排放贡献将日益突出,加快老旧机械淘汰并进一步提升机械排放标准对削减非道路移动机械排放总量具有十分重要的意义.  相似文献   

15.
广东省非道路移动机械排放清单及不确定性研究   总被引:6,自引:0,他引:6  
随着工业源和机动车等重点污染源减排空间的下降,非道路移动机械排放已成为大气污染防治领域的研究热点之一.本研究通过资料收集与实地调研,初步构建了广东省非道路机械基于机型的活动水平数据集、综合排放因子及时空分配因子,采用自下而上的排放因子法,建立了广东省2014年非道路移动机械排放清单.并利用蒙特卡洛方法定量评估清单结果不确定性.结果表明,广东省2014年非道路移动机械的SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs和CO排放总量分别为4.9、61.1、4.8、4.5、11.6 kt和45.1 kt.其中,农业机械排放以四轮农用运输车和小型拖拉机为主,贡献率分别为38.4%和18.0%,主要分布在非珠三角的农村地区;工程机械排放以建筑运输车和挖掘机为主,贡献率分别为40.1%和33.9%,主要分布在珠三角地区.此外,不确定性分析结果显示VOCs和PM_(2.5)排放结果不确定性较大,不确定性范围分别为-25.2%~41.7%和-23.4%~32.8%.NO_x不确定性较小,不确定性范围为-15.2%~17.5%.  相似文献   

16.
长三角地区典型城市非道路移动机械大气污染物排放清单   总被引:16,自引:8,他引:8  
本研究选取上海和杭州两市开展了非道路移动机械的实地调查,分析了各城市非道路移动机械的种类构成、使用特点、燃料类型、功率分布和排放标准等级,在此基础上建立了城市尺度非道路移动机械排放清单技术方法,编制了上海和杭州市2014年非道路移动机械大气污染物排放清单.结果表明,上海和杭州市非道路移动机械柴油消费分别为6.1×10~5t和3.2×10~5t,NO_x排放分别为3.09×10~4t和1.72×10~4t,PM_(2.5)排放分别为1.41×10~3t和8.1×10~2t,其中,挖掘机等建筑市政施工机械的排放贡献最为突出.非道路移动机械NO_x排放分别占两城市所有源的11.1%和16.1%,占流动源的18.5%和32.2%,已成为城市大气污染的重要来源之一.  相似文献   

17.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   

18.
天津市非道路移动源污染物排放清单开发   总被引:4,自引:8,他引:4  
张意  Andre Michel  李东  张欣  吴琳  张衍杰  马超  邹超  毛洪钧 《环境科学》2017,38(11):4447-4453
基于天津市非道路移动源污染管控需求,根据调研收集到的2015年非道路移动源活动水平数据,采用环保部《非道路移动污染源排放清单编制技术指南(试行)》推荐的核算方法,建立较为完整的天津市非道路移动源排放清单,分析污染物的时空分布.2015年,天津市非道路移动源排放CO 6.15×10~3t、HC 2.45×10~3t、NO_x2.90×10~4t、PM 1.45×10~3t、SO_21.37×10~4t.船舶污染物排放占比最高,为所有非道路移动源污染物排放总量的73.66%,主要分布于天津港区;其次是非道路移动机械,占21.66%,主要分布于市郊种植业和养殖业区县、城市建设和人群活动较为密集的城区;民航飞机和铁路机车占比较小,分别为3.55%和1.13%,主要分布于机场和铁路沿线.总体上,非道路移动源从3月开始排放量逐渐升高,而年底和年初(冬季)排放量相对较低.  相似文献   

19.
南昌市固定燃烧点源大气污染物排放清单及特征   总被引:2,自引:0,他引:2  
大气污染物排放清单是了解区域污染物排放特征、准确模拟空气质量的重要资料,而工业点源是大气污染的重点排放源.通过收集相关活动水平信息和合理的排放因子,采用"自下而上"的方法建立了南昌市2014年点源大气污染物排放清单.结果表明,SO_2、NO_x、CO、PM_(10)、PM_(2.5)和VOC排放总量分别为29576.2、17115.1、25946.6、4689.4、922.9和1190.4 t,其中,金属炼制行业对SO_2、CO和VOC的贡献最高,分别占37.75%、30.59%和38.45%;火电行业是NO_x的主要来源,其贡献率为47%;水泥等建材制造行业对PM_(10)和PM_(2.5)排放贡献最高,分别为26%和25%.根据排放源污染物排放量及地理坐标信息,建立了0.4 km×0.4 km的污染物排放量空间分布特征图,结果表明,南昌市大气污染物排放较为集中,青山湖区北部和新建区北部是SO_2、NO_x、CO和VOC的主要排放区,而PM_(10)和PM_(2.5)的排放量相对分散,并在安义县出现排放高值区.通过将计算结果与统计数据结果进行对比,了解所估算清单的准确程度.对SO_2和NO_x的计算值和统计值进行统计分析,结果显示,NMB(标准化平均偏差)和NME(标准化平均误差)值均小于50%,清单计算精度较高.同时,为了解清单数据质量,对清单的不确定性进行定量分析,结果显示,SO_2和VOC不确定性较低而PM_(10)和PM_(2.5)的不确定性相对较高,清单整体不确定性与其他研究结果相差不大.建议后期研究可以从提升基础数据质量和建立具有区域代表性的排放因子数据库着手,从而减小排放量的不确定性,获得精准可靠的大气污染物清单并应用于空气质量模型预报等更深入的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号