首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
土壤质地对自养固碳微生物及其同化碳的影响   总被引:2,自引:0,他引:2  
自养微生物可同化大气中的CO2并将其转化为土壤有机碳,对提高农田土壤的碳吸收和碳储存有重要意义,然而土壤质地对自养固碳微生物功能种群及其同化碳的影响机制还不清楚.本研究选取亚热带地区同一母质发育而成的两种质地水稻土壤(壤质黏土和砂质黏壤土),通过14C-CO2连续标记技术结合室内模拟培养实验,探讨土壤质地对自养微生物同化碳(14C-SOC)、自养微生物截留碳(14C-MBC)和自养微生物可溶性碳(14C-DOC)的影响.以固碳功能基因(cbb L基因)作为指示基因,结合PCR和克隆测序技术,分析不同质地土壤自养固碳微生物群落结构和多样性的差异.结果表明,壤质黏土14C-SOC、14C-MBC和14C-DOC平均含量分别为133.81、40.16和8.10 mg·kg-1,均显著高于砂质黏壤土14C-SOC(104.95 mg·kg-1)、14C-MBC(33.26 mg·kg-1)和14C-DOC(4.18 mg·kg-1)平均含量(P0.05),说明土壤质地显著影响了土壤自养微生物碳同化量以及自养微生物同化碳在土壤中的转化.稀疏曲线、细菌cbb L基因文库覆盖度以及多样性指数分析结果显示壤质黏土固碳细菌群落多样性高于砂质黏壤土.系统发育分析表明,壤质黏土细菌cbb L基因序列与Rhodoblastus acidophilus、Blastochloris viridis、Thauera humireducens、Mehylibium sp.、Variovorax sp.等具有一定的同源性,而砂质黏壤土cbb L基因序列主要与根瘤菌和放线菌同源.可见,土壤质地对自养固碳微生物群落结构和多样性产生了深刻的影响,壤质黏土中较高的黏粒含量、土壤养分含量和阳离子交换量可能有利于维持更高的自养固碳微生物多样性和活性,从而导致不同质地土壤自养微生物碳同化量及其转化存在显著差异.  相似文献   

2.
通过对南海水域多个区域不同深度的海水分别以H2、Na2S2O3、Na NO2为电子供体经过一定时间的驯化培养后,测定其中非光合微生物的固碳潜力,并统计南海水域不同深度非光合微生物在不同电子供体条件下固碳潜力的差异性,最后结合不同深度海水的主要固碳基因丰度差异,分析南海水域不同深度海洋非光合微生物在不同电子供体条件下固碳潜能差异的原因.结果发现以Na NO2为电子供体时,海洋非光合微生物固碳能力普遍较低,各深度之间没有显著差异;以H2为电子供体时,表层海水中的非光合微生物的固碳潜力显著高于深层海水中的;而以Na2S2O3为电子供体时,深层海水中的非光合微生物的固碳潜力显著高于表层海水中的.基因分析结果表明,固碳基因cbb L在表层海水中的丰度高于深层海水,而cbb M基因在深层海水中的丰度高于表层海水.硫细菌大多以拥有cbb M基因为主,而氢细菌大多以拥有cbb L基因为主.因此不同海洋深度非光合微生物对不同电子供体响应的差异性可能和优势菌群结构的差异有关.海洋表层和深层溶解氧、无机碳含量的差异是导致菌群结构差异,乃至固碳潜力差异的重要原因.  相似文献   

3.
王蕊  吴宪  李刚  修伟明  王丽丽  张贵龙 《环境科学》2019,40(12):5561-5569
土壤固碳细菌的CO_2同化作用能够将CO_2转化成有机质,是土壤碳循环的重要过程,然而对土地利用方式转变下土壤固碳细菌群落丰度和结构变化的了解却非常有限.在此,采用q PCR和高通量测序技术研究了东北丘陵区林地转型耕地后白浆土cbb L细菌群落丰度和结构变化,并探讨了土壤理化因子在群落丰度和结构变化中的作用.结果表明,耕地土壤细菌的cbb L基因丰度为2. 57×108copies·g~(-1),显著低于林地土壤的7. 30×108copies·g~(-1),但林地与耕地间cbb L/16S r RNA基因拷贝数比无显著差异.与林地相比,耕地土壤cbb L细菌群落的Shannon和Chao1指数显著降低,而Simpson指数显著升高.系统发育树分析和主坐标分析(principal co-ordinates analysis,PCo A)均表明林地转型耕地改变了土壤cbb L细菌群落组成.Pearson相关分析表明,cbb L基因丰度和Shannon指数均与pH极显著正相关,而与AP和NO_3-显著负相关,证明了施肥导致的土壤pH和速效养分改变是造成土壤cbb L细菌群落丰度和多样性变化的主要原因.典范对应分析(canonical correspondence analysis,CCA)显示,pH、NO_3-、AP和NH_4+与土壤cbb L细菌群落结构变化显著相关.综上所述,了解土壤cbb L细菌群落对土地利用方式转变的响应及其微生物学机制将为加强我国东北丘陵区白浆土的可持续利用及生态环境重建提供新的见解.  相似文献   

4.
生物质炭对双季稻田土壤反硝化功能微生物的影响   总被引:10,自引:6,他引:4  
目前,基于田间条件下生物质炭添加对稻田反硝化微生物的调控效应还不甚明确.为此,本研究采用小区试验,通过在双季稻田添加不同量的小麦秸秆生物质炭(0、24和48 t·hm-2,分别用CK、LC和HC代表),结合实时荧光定量PCR(q PCR)和末端限制性片段长度多态性(T-RFLP)分析技术,研究了生物质炭添加对双季稻田休闲季和水稻季土壤反硝化微生物相关功能基因(调控硝酸还原酶的nar G基因,亚硝酸还原酶的nir K基因和氧化亚氮还原酶的nos Z基因)的影响.由于生物质炭呈碱性,添加到土壤后,可提高稻田休闲季土壤p H 0. 2~0. 8个单位.生物质炭本身含有部分可溶性N,因此,添加生物质炭可增加休闲季土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,增幅分别达21. 1%~32. 5%和63. 0%~176. 0%,但由于其吸附作用,降低了水稻季NH_4~+-N含量48. 8%~60. 1%.生物质炭添加增加了休闲季微生物生物量氮(MBN)含量,这可能是由于生物质炭较大的比表面积为微生物生存提供了适宜的环境,可利用养分的增加促进了微生物的生长.与对照相比,休闲季生物质炭引起的NH_4~+-N和NO_3~--N含量增加,促进NH_4~+-N向NO_3~--N的转化,进而增加nar G和nos Z的基因丰度(P0. 05),同时,生物质炭处理p H的提高促进了nos Z的基因丰度的增加,显著改变了反硝化功能基因nar G和nos Z的群落结构,并以此对反硝化作用产生影响,但未对休闲季氧化亚氮(N_2O)排放产生影响.而在水稻季,生物质炭增加了土壤nos Z的基因丰度(P 0. 05),HC处理增加了nir K基因丰度(P 0. 05),这也是导致水稻季HC处理N_2O排放增加的重要原因.生物质炭通过降低水稻季土壤NH_4~+-N含量,改变了nir K和nos Z基因的群落结构,而nar G基因群落结构的变化影响了土壤N_2O排放.综上所述,生物质炭可通过改变双季稻田土壤性质,来影响参与土壤反硝化作用的相关微生物,进而影响土壤N_2O排放及NO_3~--N的淋失.  相似文献   

5.
稻田土壤固碳功能微生物群落结构和数量特征   总被引:10,自引:4,他引:6  
研究不同类型稻田土壤自养微生物数量和多样性差异及其影响因子,对全面认识稻田生态系统的固碳潜力及其机制具有重要意义.鉴于此,本文选取4种典型稻田土壤,通过室内培养实验对具备卡尔文循环途径碳同化微生物进行了研究.利用荧光定量PCR(qPCR)、克隆文库以及末端限制性长度多态性分析(T-RFLP)技术,研究了卡尔文循环关键酶(1,5二磷酸核酮糖羧化酶/加氧酶Rubis CO)的2种编码基因(cbbL和cbbM)的丰度和多样性.结果表明,与培养前相比,培养45 d后碳同化自养微生物数量有所增加,cbbL基因丰度比cbbM基因高3个数量级.不同稻田土壤中碳同化功能微生物优势种群存在差异,且这些微生物大多不能归类到已知的细菌类群中,部分可归类的与变形菌和放线菌有较高相似度.RDA分析结果显示土壤有机碳(SOC)、阳离子交换量(CEC)、pH、黏粒、粉粒和砂粒含量对碳同化功能微生物群落结构有显著影响.本文的研究结果对于理解微生物在碳循环过程中的作用具有一定的科学意义,也可以为稻田土壤肥力科学化管理和构建低碳农业提供科学依据.  相似文献   

6.
研究农田土壤自养微生物碳同化潜力,对全面认识农田生态系统碳吸收和碳储存有着重要意义.选取6种典型农田土壤,通过14C连续标记示踪技术结合密闭系统模拟培养,量化了土壤自养微生物碳同化潜力及其向土壤活性碳库组分转化,同时结合分子生物学技术及酶学分析方法,探讨了不同土壤自养微生物细菌固碳功能基因(cbbL)丰度及关键酶(RubisCO)活性.结果表明,土壤自养微生物具有可观的CO2同化潜力,在本实验条件下,全球每年表层(0~20 cm)土壤通过自养微生物的同化作用可固定的碳为0.57~7.3 Pg.供试土壤的14C土壤有机碳(14C-SOC)含量范围为10.63~133.81 mg·kg-1,而14C可溶性有机碳(14C-DOC)、14C微生物生物量碳(14C-MBC)含量范围分别为0.96~8.10 mg·kg-1、1.70~49.16 mg·kg-1.土壤可溶解性有机碳(DOC)、微生物量碳(MBC)和SOC的更新率分别为5.07%~14.3%、2.51%~13.12%和0.09%~0.64%.土壤细菌cbbL丰度范围为2.40×107~1.9×108copies·g-1,且RubisCO酶活性(CO2/soil)范围为34.06~71.86 nmol·(g·min)-1.相关分析表明,土壤14C-SOC与14C-MBC及RubisCO酶活性均呈极显著正相关关系(P<0.01).说明土壤对大气CO2的同化作用主要是由自养微生物参与的同化过程,且较高的RubisCO酶活性意味着较高的自养微生物CO2同化潜力.  相似文献   

7.
长期施肥酸性旱地土壤硝化活性及自养硝化微生物特征   总被引:7,自引:1,他引:6  
构建微域培养结合梯度凝胶电泳(DGGE)、Illumina MiSeq高通量测序、生物信息学分析等分子生态学技术,以不施肥土壤为对照(CK),研究长期施化肥(NPK)和有机肥(OM)对酸性旱地土壤硝化活性及自养硝化微生物群落的影响,并认知其与土壤理化因子间的关系.结果表明,施化肥和有机肥显著提高土壤有机碳和无机氮含量,施有机肥提高土壤pH和总氮含量、降低C/N;供试土壤自养硝化作用占据主导(73.60%~85.32%),施肥显著提升土壤自养硝化活性,且施有机肥提升效果更为明显;微域培养后,OM土壤氨氧化古菌(AOA)和细菌(AOB)amoA基因绝对丰度及16S rRNA基因相对丰度显著上升,而CK和NPK土壤仅AOA相对丰度显著上升,即3种土壤AOA均有明显活性(主要类群为Nitrososphaera,99.30%),而AOB仅在OM土壤有活性(主要类群为Nitrosospira,99.99%),另外还发现OM土壤中亚硝酸盐氧化细菌(NOB)有较强活性(主要类群为Nitrospira,96.69%);逐步回归分析显示自养硝化活性显著受总氮含量影响,AOA和AOB amoA基因丰度分别受有机碳含量和pH影响,Nitrososphaera相对丰度与NO_3~--N含量显著正相关,而Nitrosospira和Nitrospira相对丰度则与C/N显著负相关.可见,长期施肥后土壤总氮含量的提升显著刺激自养硝化活性;以Nitrososphaera为主的AOA在酸性旱地土壤硝化作用中发挥了重要作用,施有机肥土壤pH上升及C/N下降刺激了Nitrosospira(AOB)生长,从而改变了酸性旱地土壤中活跃的自养硝化微生物类群.  相似文献   

8.
为探讨含四环素沼肥的生态毒性,采用盆栽试验研究了含四环素沼肥对小白菜品质、土壤微生物群落代谢功能多样性及抗性基因的影响. 结果表明:与CK相比,添加高浓度(15 mg/kg)四环素沼肥处理下,小白菜鲜质量和w(维生素C)分别降低了5.7%和16.7%,w(硝酸盐)增加了34.3%. Biolog微平板分析显示,添加高浓度四环素的沼肥显著提高了土壤微生物群落碳源利用多样性和物种丰富度. 实时荧光定量PCR分析发现,在小白菜幼苗期,添加高浓度四环素的沼肥处理下,土壤中四环素类抗性基因相对丰度比CK高出0.69~4.03倍. 无论沼肥中是否添加四环素,施肥后小白菜内生菌中均存在抗性基因,并且小白菜内生菌抗性基因相对丰度均以CK最高,比其他处理高出0.55~325.72倍. 研究显示,添加四环素的沼肥改变了小白菜品质和产量以及土壤微生物群落碳源利用多样性和物种丰富度,增加了土壤中四环素类抗性基因丰度,降低了小白菜内生菌的抗性基因水平.   相似文献   

9.
岩溶地区不同土地利用方式土壤固碳细菌群落结构特征   总被引:7,自引:1,他引:6  
固碳细菌是土壤碳循环重要的微生物群落,研究其群落结构特征对认识土壤生态系统的固碳机制具有重要意义.以桂林毛村岩溶实验场的岩溶区、混合区与非岩溶区为研究样区,采集稻田、玉米和柑橘园表层土壤,以cbb LR为固碳细菌的指示基因,采用高通量测序方法,对比在三类区域土壤中固碳细菌的群落丰度、组成及多样性特征的异同.结果表明,三类区域土壤中固碳细菌属于变形菌门和放线菌门.其中,变形菌门的α-变形菌纲(α-Proteobacteria,24.6%)为三类区域土壤中的优势纲,以根瘤菌为主的兼性自养菌是主要的固碳细菌.在岩溶区,伯克氏菌目(Burkholderiales)、红假单胞菌属(Rhodopseudomonas)、固氮螺菌属(Azospirillum)、费氏根瘤菌(Sinorhizobium fredii HH103)、豌豆根瘤菌(Rhizobium leguminosarum bv.trifolii)等微生物的丰度均高于混合区和非岩溶区;而慢生根瘤菌属(Bradyrhizobium)为混合区与非岩溶区土壤中的优势种群.冗余分析(redundancy analysis)表明,pH、土壤有机碳(SOC)、可溶性有机碳(DOC)、总氮(TN)和阳离子交换量(CEC)等土壤因子是影响固碳细菌群落结构差异的主要生态因子.以上结果表明,岩溶区的土壤特性对固碳细菌的群落结构有显著影响.  相似文献   

10.
生物固氮有助于植物对土壤中有效氮的利用,减少农业生态系统中无机氮肥的使用.生物炭可以通过其特殊物理结构调节土壤理化性质,提高土壤微生物的丰度和活性,然而关于生物炭对水稻土生物固氮方面的研究并未深入了解.试验共设置3个处理:施磷钾肥对照(CK)、当地常规施肥处理(CON)和常规处理配施20 t·hm-2生物炭(B),采用qPCR和高通量测序分析固氮基因(nifH)的丰度和群落结构变化,探讨生物炭添加对琼北地区双季稻田土壤固氮微生物的影响.结果表明,相比CK和CON处理,添加生物炭提高了土壤pH和土壤有机碳(SOC)含量以及作物产量.同时nifH基因丰度与土壤pH和SOC呈显著正相关.与CK处理相比,添加生物炭处理增加了nifH基因丰度以及显著改变了早稻季土壤固氮微生物的群落结构,常规施肥处理减少了nifH基因丰度而对固氮微生物群落影响相对较小.施用生物炭使固氮微生物群落优势属发生了变化,地杆菌属(Geobacter)、嗜糖假单胞菌属(Pelomonas)、固氮螺菌属(Azospirillum)、厌氧粘细菌属(Anaeromyxobacter)和铁氧化细菌属(Sideroxydans)等是所有处理中的优势菌属.相比CK处理,生物炭处理显著增加了嗜糖假单胞菌属的相对丰度,而常规施肥处理增加了地杆菌属的相对丰度.结果表明,生物炭添加具有一定的减肥潜力,为减少琼北地区稻田氮肥施用,提高氮肥利用率提供了理论依据.  相似文献   

11.
随着全球气候变化的不断加剧,大气CO2浓度呈明显增加趋势,这将间接影响土壤-植物-微生物系统的氮循环过程.为研究典型水稻土壤反硝化细菌对CO2浓度升高的响应规律和机制,借助水稻密闭培养箱,运用实时荧光定量聚合酶链式反应(Real-Time qPCR)分子技术,设置不施氮(0 mg/kg)和常规施氮(100 mg/kg)2个处理,研究CO2倍增对水稻不同生长期土壤关键反硝化功能细菌(narG、nirK和nirS型)丰度的影响.结果表明:①在2种施氮水平,CO2倍增显著促进了水稻分蘖期、孕穗期、扬花期和成熟期水稻根系生长(增幅为2.96%~28.4%)、地上部生物量增加(增幅为7.1%~107.3%)以及成熟期籽粒干质量的增加(增幅为19.5%和38.0%),具有显著的增产效应.②反硝化细菌丰度对CO2倍增的响应与生育期及施氮水平有关,CO2倍增在2个施氮水平均抑制分蘖期反硝化细菌的繁殖,显著增加孕穗期反硝化细菌数量;在水稻扬花期,CO2倍增促进了施氮处理narG和nirS型反硝化细菌数量的增加,在成熟期抑制未施氮处理下narG、nirK和nirS型反硝化细菌的生长.另外,narG、nirK、nirS型反硝化细菌丰度整体表现为narG > nirS > nirK,且随水稻的生长,其在成熟期的丰度均呈降低趋势.nirK和nirS基因同属亚硝酸还原酶,但nirS基因丰度高于nirK,且对CO2倍增和施氮的响应有所差异.研究显示,CO2倍增可显著增加水稻生长和产量,不同施氮水平对稻田土壤反硝化细菌丰度的影响存在差异.   相似文献   

12.
粪肥和有机肥施用对稻田土壤微生物群落多样性影响   总被引:7,自引:0,他引:7  
为探究典型粪肥施用对稻田土壤微生物的影响,开展崇明岛稻田粪肥施用现场实验.采用高通量测序技术分析对照组(CK)和鸡粪(CM)、猪粪(PM)和有机肥(OF)施用稻田土壤微生物群落组成及多样性.结果表明,与CK相比,施用有机肥可提高土壤有机质(SOM),施用鸡粪可显著提高土壤氨氮(NH~+_4-N)和总氮(TN)含量(P0.05).PM组土壤微生物多样性显著高于CK组(P0.05),OF组土壤微生物群落丰富度显著高于CM组(P0.05).pH值、总磷(TP)、总氮和Pb是影响稻田土壤微生物群落组成的重要因素,CM组微生物群落结构与其他3组差异较大.与CK相比,OF组增加了硝化螺菌属(Nitrospira)的相对丰度,CM组显著降低了反硝化细菌Ignavibacteriae的相对丰度(P0.01),达40.56%,但显著增加了硝化细菌陶厄氏菌属(Thauera)的相对丰度(P0.05),达203.00%; PM组显著增加了氨化细菌Armatimonadetes的相对丰度(P0.05),达57.51%,还增加了厌氧绳菌属(Anaerolinea)的相对丰度,达102.00%.施用鸡粪和猪粪分别显著增加致病菌假单胞菌属(Pseudomonas)和黄杆菌属(Flavisolibacter)的相对丰度(P0.05),而有机肥施用则降低了黄杆菌属的相对丰度.粪肥的施用增加了参与稻田土壤氮循环过程细菌的丰度,对调节稻田土壤氮平衡起着正向作用,然而鸡粪和猪粪的直接施用会导致病原菌增多,对稻田土壤健康有一定的胁迫.  相似文献   

13.
稻田土壤长期的淹水厌氧环境有利于反硝化作用的进行,是导致N2O大量排放的重要原因之一.目前,关于稻田土壤N2O排放特征的相关研究已有不少,然而关于稻田土壤N2O的消纳能力及相关功能微生物的应答机制尚不明确.本研究以淹水水稻土原状土柱(0~5 cm)为研究对象,在土柱底部输入外源N2O气体,系统监测所添加外源N2O通过土柱的浓度及关键土壤因子的动态变化特征,以及分析nosZ-I型功能种群组成的演替规律,以期揭示淹水水稻土N2O的消纳能力及nosZ-I型功能种群的应答机制.结果表明,外源N2O输入后约97.39%扩散进入土柱,逸散出土表的N2O占0.72%~7.75%,达到排放高峰后被土壤继续消耗,培养192 h后外源N2O处理比对照多消耗67.10% N2O,N2O消耗速率提高144.2%.同时,NH4+-N、NO3--N和DOC分别多消耗了19.65%、16.29%和8.41%.N2O输入192 h后nosZ-I的群落多样性没有显著差异,但是其种群组成发生显著改变:优势菌株OTU5004、OTU5065、OTU960和OTU1282(Proteobacteria)相对丰度显著提高,其中OTU5004菌株相对丰度比初始样和CK升高7.30%和4.63%,非优势菌株OTU5265(Azoarcus sp.)比初始样和CK升高0.33%和0.15%.上述结果表明,0~5 cm深度渍水水稻土壤具有很强的N2O消耗能力,外源N2O添加使N2O消耗速率明显加快,提高了淹水水稻土壤对N2O的消纳潜力,促进碳氮转化和nosZ-I群落组成变化,这将为降低大气N2O排放提供新的参考.  相似文献   

14.
为了阐明施肥量对稻田CO_2排放及其温度敏感性的影响,采用静态箱-气相色谱法,对福州平原稻田对照(CK)、常规施肥组(CG)和倍增施肥组(BZ)的CO_2排放及其温度敏感性进行了测定和分析.结果表明,CK、CG和BZ的CO_2排放通量变化范围分别为32.33~3181.97、30.68~3701.05和32.81~3206.29 mg·m~(-2)·h~(-1),CG的CO_2排放通量比较CK增加了14.16%,BZ的CO_2排放通量较CK增加了8.04%,CK、CG和BZ之间CO_2排放通量差异不显著(p0.05);稻田CO_2排放与土温(r=0.683,p0.01)、株高(r=0.820,p0.01)及含水量(r=0.309,p0.05)具有显著的正相关关系;CK、CG和BZ的CO_2排放通量与土温和气温均具有显著的正相关关系(n=42,p0.01);CK、CG、BZ的Q_(s10)值和Q_(a10)值分别为28.13、18.88、13.24和9.86、7.64、6.35,CK的温度敏感性显著高于CG和BZ(p0.05),施肥显著降低了稻田CO_2排放的温度敏感性(p0.05).  相似文献   

15.
为探究短期氮磷添加对祁连山亚高山草地土壤呼吸及其组分的影响,于2019年6~8月采用随机区组设计,设置氮添加[10 g ·(m2 ·a)-1,N]、磷添加[5 g ·(m2 ·a)-1,P]、氮磷混施[10 g ·(m2 ·a)-1N、5 g ·(m2 ·a)-1P,NP]、对照(CK)和完全对照(CK'')这5个处理,测定了土壤总呼吸速率及其组分.结果表明,氮添加对土壤总呼吸和异养呼吸的降低速率均低于磷添加[-16.71% vs.(相对照,下同)-19.20%;-4.41% vs.-13.05%],但对自养呼吸的降低速率高于磷添加(-25.03% vs.-23.36%),而氮磷混施则对土壤总呼吸速率无显著影响.土壤总呼吸速率及其组分与土壤温度均呈显著的指数相关,其中氮添加降低了呼吸速率的温度敏感性(Q10:-5.64%~0.00%),而磷添加增加了Q10(3.38%~6.98%),氮磷混施降低了自养呼吸速率但增加了异养呼吸速率的Q10(16.86%),从而降低了土壤总呼吸速率的Q10(-2.63%~-2.02%).土壤pH、土壤全氮和根系磷含量与自养呼吸速率均具有显著相关性(P<0.05),而与异养呼吸速率无显著相关,且根系氮含量只与异养呼吸速率呈显著负相关(P<0.05).总体上,自养呼吸速率对氮添加更加敏感,而异养呼吸速率对磷添加更加敏感,氮或磷添加均显著降低了土壤总呼吸速率,而氮磷混施并未显著影响土壤总呼吸速率,此结果可为准确评估亚高山草地土壤碳排放提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号