首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 375 毫秒
1.
长沙市人为源大气污染物排放清单及特征研究   总被引:5,自引:1,他引:4  
根据收集的长沙市人为源活动水平数据,建立了该地区2014年1 km×1 km人为源大气污染物排放清单.结果显示,2014年长沙市SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放总量分别为53.5×10~3、78.3×10~3、284.6×10~3、102.3×10~3、42.1×10~3、4.0×10~3、7.2×10~3、64.2×10~3、27.1×10~3t.化石燃料固定燃烧源为最大的SO_2排放贡献源,道路移动源是主要的NO_x贡献源,CO排放主要来自化石燃料固定燃烧源和道路移动源,长沙市VOCs的最大贡献源是溶剂使用源,PM_(10)、PM_(2.5)最主要的排放源是扬尘源,BC最大的排放贡献源为化石燃料固定燃烧源,生物质燃烧源是最大的OC贡献源,NH_3排放主要来源于畜禽养殖和农业施肥.空间分布结果显示,长沙市NH_3的排放在宁乡县、望城区、长沙县、浏阳市分布较多,主要呈现片状分布.其他污染物排放高值区则主要分布在中心城区、工业区及道路分布区域.  相似文献   

2.
基于本地污染源调查的杭州市大气污染物排放清单研究   总被引:4,自引:0,他引:4  
基于实地调查数据并辅以统计数据,采用物料衡算法和排放因子法,估算了杭州市2015年大气污染物排放清单,并选取经纬度坐标、路网、航道、土地类型和人口等数据作为权重因子,研究了该地区各类排放源污染物排放空间分布特征.结果表明,杭州市2015年SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)和NH_3年排放总量分别为22.20×10~3、108.17×10~3、192.10×10~3、134.94×10~3、78.12×10~3、27.65×10~3和59.75×10~3t.工业源是杭州市SO_2排放的主要来源,移动源对NO_x和CO的排放贡献最为显著,扬尘源是杭州市PM_(10)和PM_(2.5)排放的最主要来源,其次为工业源;VOCs排放的主要来源依次为工业源、天然源和移动源;NH_3排放主要来自农业源.从空间分布来看,排放主要集中在中心城区及其周边的萧山、下沙、大江东、余杭和富阳等工业企业相对密集的区域.本研究建立的排放清单在污染源覆盖范围和排放因子方面仍然存在一定的不确定性,建议在后续研究中重点开展低、小、散企业及本地化排放因子调查研究工作,进一步提升大气污染物排放清单的准确度.  相似文献   

3.
广西工业源大气污染物排放清单及空间分布特征研究   总被引:5,自引:0,他引:5  
大气污染物排放清单是了解区域污染物排放特征的重要资料,而工业源是大气污染的重点排放源.研究根据收集的工业企业活动水平数据,选择合理的计算方法和排放因子,建立了广西2016年工业源大气污染物排放清单.结果表明,2016年广西工业源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOCs排放总量分别为20.7×10~4、21.6×10~4、147.5×10~4、48.4×10~4、25.7×10~4、34.7×10~4 t.其中,电厂和非金属矿物制品业对SO_2、NO_x、PM_(2.5)和VOCs的贡献最高.除此之外,黑色金属冶炼是SO_2、NO_x和PM_(2.5)的主要贡献源;有色金属冶炼是PM_(2.5)的主要贡献源;农副食品加工业是VOCs的主要贡献源.根据排放源污染物排放量及地理坐标信息,建立了污染物排放量空间分布特征图.结果显示,广西工业企业SO_2和NO_x排放主要集中在百色、柳州、防城港和贵港市;颗粒物排放主要集中在贵港、柳州和百色市;VOCs排放主要集中在柳州、贵港和崇左市.研究建立的排放源清单结果具有一定的不确定性,建议进一步完善基础研究.  相似文献   

4.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

5.
《环境科学与技术》2021,44(1):207-215
该文通过污染源现场调查和部门资料收集,结合全国第二次污染源普查和湖北省污染源自动监控综合管理系统,以2017年为基准年,对恩施州大气污染物排放量进行了估算,并建立了恩施州1 km×1 km大气污染源排放清单,研究分析了清单结果和普查结果的差异。结果显示,2017年恩施州人为源SO_2、NO_x、CO、VOCs、PM_(10)、PM_(2.5)、BC、OC和NH_3排放总量分别为12 702.26、19 610.04、168 721.49、16 709.92、17 382.89、10 789.67、3 593.30、5 848.86和43 778.37 t;天然源挥发性有机物(BVOCs)排放总量为159 239.47 t。其中,固定燃烧源是SO_2、CO、PM_(10)、PM_(2.5)、BC和OC主要来源,移动源是NO_x和VOCs的主要来源,NH_3的主要来源是农业源,PM_(10)、PM_(2.5)排放主要来自扬尘源。阔叶林和针叶阔叶混交林对天然源排放贡献较大。空间分布上,污染物排放主要集中在恩施市、利川市和巴东县。对比清单结果和普查结果,SO_2和VOCs排放量估算较普查结果高,NO_x排放量估算与普查结果相差不大。  相似文献   

6.
该文基于对金华市大气污染排放源的摸底调查,基础数据收集和分析,结合国内外的研究结果,采用"自下而上"为主的排放系数法,建立了2013年金华市人为源大气污染物排放清单。该清单涉及的污染物包括SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOC和NH_3。人为污染源种类包括电厂源、工业源、移动源、扬尘源、VOC相关源及其他污染源,农业源,居民生活源等。结果表明,金华市2013年大气污染源SO_2排放总量约为3.83万t,NO_x约为7.75万t、CO约为12.50万t、PM_(10)约为4.10万t,PM_(2.5)约为1.88万t、VOC约为7.66万t、NH_3约为2.63万t。从排放源的分担率来看,工业源是金华市大气污染物的最主要的排放源之一,对SO_2、NO_x、CO、PM_(10)和PM_(2.5)的贡献分别达到了67.31%、34.42%、30.39%、53.02%和50.95%。同样,道路移动源的贡献也不容忽视,对NO_x、CO、PM_(10)和PM_(2.5)的贡献分别达到了42.84%、34.13%、3.31%、6.55%。电厂锅炉、道路扬尘、工业溶剂使用、畜禽养殖对不同污染物分别有着重要贡献。电厂锅炉对SO_2、NO_x、CO的排放量分别贡献了29.06%、17.89%、9.73%。道路扬尘对PM_(10)和PM_(2.5)的贡献分别为25.68%和18.01%。工业溶剂对于VOC的贡献为32.65%。NH_3主要来自畜禽养殖,占了66.57%。该人为源大气污染物排放清单可为当地的污染防控提供重要的基础信息。  相似文献   

7.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

8.
通过收集整理南京市工业源活动水平,采用"自下而上"的方法建立了2014年南京市工业源大气污染物排放清单。清单结果显示,2014年南京市工业源SO_2、NO_x、PM_(2.5)、PM_(10)、CO、VOCs和NH_3的一次排放总量分别为6.70、14.45、4.97、7.06、83.03、14.47和0.07万t。电力生产是SO_2和NO_x的主要排放源,占工业源总排放量的40%以上,钢铁行业是PM_(2.5)、PM_(10)和CO的主要排放源,均占55%以上,VOCs排放主要来自石化化工,贡献了约62.6%的工业源排放。工业重点源空间分布结果显示,南京市重点源排放主要集中于长江沿岸一带的2个园区:南京化学工业园区和南京经济技术开发区。该研究建立的排放清单具有一定的不确定性,建议后续研究加强大气污染物排放系数的研究,进一步完善大气污染物排放清单,为该市大气污染预报预警和污染控制措施的制定提供重要基础数据。  相似文献   

9.
辽宁省人为源大气污染物排放清单及特征研究   总被引:2,自引:0,他引:2  
为全面评估辽宁省关键大气污染物排放状况,系统收集和整理全省基础活动水平信息,采用排放因子法建立了该省2012年人为源大气污染物排放清单.结果显示,2012年辽宁省SO_2、NO_x、CO、PM10、PM_(2.5)、BC、OC及NH_3排放总量分别为1434.8×10~3、1632.3×10~3、6682.9×10~3、1529.9×10~3、1087.8×10~3、74.5×10~3、176.1×10~3t及880.4×10~3t.BC和OC最大贡献源为生物质燃烧源,排放集中分布在辽宁中、西部;NH_3主要来自畜禽养殖与化肥施用,排放高值区位于辽宁中部农业畜牧业发达地区;其他污染物主要来自固定燃烧源和工艺过程源,集中分布在辽宁中部城市群以及大连金州区、甘井子区和普兰店区.大连、沈阳是SO_2、NO_x、NH_3和颗粒物主要排放城市,鞍山和本溪由于钢铁行业发达,成为CO排放量最大的城市.基于卫星观测获得的NO_2垂直柱浓度对NO_x排放空间分布进行评估,两者相关性系数为0.57(p0.01).辽宁省级排放清单与国家尺度排放清单在一定程度存在差异,主要原因在于采用的活动水平和污染物控制效率的不同,基于详细本地化污染源信息建立的省级排放清单可以较好地反映实际情况.建议完善点源排放特征信息并加强本地化测试,进一步降低省级排放清单不确定性.  相似文献   

10.
基于达标约束的南京市环境空气质量情景模拟   总被引:3,自引:3,他引:0  
以2030年南京市6项污染物达标为约束,在2015年大气污染物排放清单基础上,利用CMAQ模型分析了PM_(2.5)对南京本地不同前体物排放的敏感性,通过情景分析预测排放清单,模拟了4种减排情景的空气质量变化,最终获得达标约束下大气污染物总量控制指标.模拟结果显示,减少一次颗粒物PPM (primary particulate matter)排放对降低大气中的PM_(2.5)浓度最为有效;在周边地区减排的基础上,本地减少PPM排放对PM_(2.5)年均浓度下降的相对贡献可达88%,其次为NH_3、NOx、SO_2与VOCs减排,其相对贡献分别为10. 3%、5. 5%、3. 2%与0. 5%;相比2015年,4种情景下南京市主要大气污染物减排比例在22%~53%,未来控制活动水平对减排SO_2、NH_3与CO较有效,而NOx和VOCs末端治理方面还有较大空间;将SO_2、NOx、PM10、PM_(2.5)、BC、OC、CO、VOCs及NH_3的排放量分别控制在2. 43×104、8. 47×10~4、9. 42×10~4、3. 74×10~4、0. 19×10~4、0. 30×10~4、26. 56×10~4、13. 08×10~4及1. 50×10~4t以内时,预计南京市6项污染指标可以达到国家环境空气质量二级标准.  相似文献   

11.
徐晨曦  陈军辉  李媛  何敏  冯小琼  韩丽  刘政  钱骏 《环境科学》2020,41(10):4482-4494
本研究根据自下而上和自上而下相结合的方法收集四川省人为源活动水平数据,其中工业源活动水平来自四川省第二次污染源普查数据,涵盖11020台锅炉信息、60078家工业企业信息,成都市收集了19152家工业企业数据,占四川省企业总数的32%.各污染源选取合理的排放因子并结合GIS技术,构建了该地区2017年9 km×9 km人为源大气污染物排放清单.结果表明,2017年四川省SO2、NOx、CO、PM10、PM2.5、BC、OC、VOCs和NH3排放总量分别为308.6×103、725.7×103、3131.2×103、927.6×103、422.4×103、30.2×103、72.0×103、600.9×103和887.1×103t.固定燃烧源和工艺过程源是SO2主要贡献源,CO的主要贡献源为工艺过程源和移动源,扬尘源和工艺过程源为PM10和PM2.5的主要贡献源,扬尘源是BC和OC最大贡献源,VOCs排放源主要来自工艺过程源、移动源和溶剂使用源,NH3排放主要来源于畜禽养殖和氮肥施用.污染空间分布结果显示,各项污染物主要集中分布于人口密集,工业和农业较为发达的四川盆地和攀枝花部分区域,高值点位集中在成都平原地区的德阳—成都—眉山—乐山沿线.本研究建立的排放清单仍具有一定不确定性,后续研究工作中应进一步加强活动水平数据获取的准确性,针对典型污染源开展污染物排放因子测试工作,完善网格化排放清单,为四川省大气污染防治提供科学支撑.  相似文献   

12.
海峡西岸地区人为源大气污染物排放特征研究   总被引:2,自引:3,他引:2  
黄成 《环境科学学报》2012,32(8):1923-1933
采用以"自下而上"为主的方法建立了2007年海峡西岸地区的人为源大气污染物排放清单.计算结果显示,海西地区人为源SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为69.5×104、96.1×104、413.1×104、93.9×104、40.6×104、85.0×104和28.5×104t.电厂和工业燃烧设施分别占SO2排放的48%和39%,以及NOx排放的51%和25%.水泥、砖瓦等制造过程贡献了约51%的PM10排放和36%的PM2.5排放.秸秆燃烧、加油站和涂料等VOCs面源分别占到其排放总量的27%、15%和4%.NH3的主要排放源为畜禽养殖和氮肥施用等农业部门,占到总排放量的89%.海西地区的单位面积大气污染物排放量仅相当于长三角地区的25%左右,略高于全国平均水平.该地区人为源和天然源VOCs排放比重分别占56%和44%,人为源VOCs排放比重低于全国大部分地区.海西大气污染高排放地区主要集中在沿海一带,以泉州、潮汕、福州和温州等地区为主,建议"十二五"发展过程中,重点关注上述高排放地区,限制重点排放源的发展,开发低耗能、低污染的发展模式.  相似文献   

13.
成都市道路移动源排放清单与空间分布特征   总被引:4,自引:0,他引:4  
以成都市为例开展了路网、交通流、道路行驶工况和机动车保有量等数据的收集工作,运用自下而上的方法,基于实测校正和本地化的IVE模型计算了不同区域机动车在高速路、主干道、次干道和支路的排放因子,应用GIS技术建立了1 km×1 km的成都市高时空分辨率道路移动源排放清单.结果表明,2016年成都市道路移动源CO、VOCs、NO_x、SO_2、PM_(10)和NH_3排放量分别为4.2×10~5、4.5×10~4、7.2×10~4、0.4×10~3、1.1×10~4和6.2×10~3t.CO排放主要贡献车型为小型客车、中型客车和大型客车,VOCs排放主要源于小型客车和摩托车,NOx和SO2排放主要产生于小型客车和重型货车,PM10排放主要贡献车型为重型货车,NH3排放主要由小型客车贡献.污染物排放量空间分布呈现出由城市中心向卫星城市、远郊区递减趋势,中心城区和二圈层区域路网密集,排放呈片状分布,三圈层则呈带状分布.排放清单机动车技术分布数据可靠性较高,而交通流数据和排放因子存在一定不确定性.  相似文献   

14.
兰-白城市群主要大气污染物网格化排放清单及来源贡献   总被引:3,自引:3,他引:0  
甘肃兰-白城市群为我国西北地区重要的重工业基地,大气污染物排放总量较大.研究高空间分辨率的污染物排放清单对于区域空气质量预报预警、减排方案模拟研究及大气污染防治等具有重要的科学意义.本文以兰州和白银为主要研究区域,基于研究区域污染源排放及统计年鉴等数据资料,建立了兰(2015年)-白(2016年)城市群7种(类)主要大气污染物网格化排放清单,并对其空间排放特征以及排放源贡献进行了详尽地讨论分析.结果表明,兰-白城市群7种主要污染物年排放量分别为:NOx 2.22×105 t、NH3 4.53×104 t、VOCs 7.74×104 t、CO 5.62×105 t、PM10 4.95×105 t、PM2.5 1.91×105 t和SO2 1.37×105 t.其中CO的排放量最大,NH3的排放量最小.本清单与北大和清华MEIC清单对比结果表明,交通源排放3个清单一致性较高,CO排放总量和其工业源排放与北大和清华MEIC清单排放源相差30%~40%,推测原因主要为清单计算过程中排放因子、分辨率和数据年份的差异.本清单网格化空间分布显示除NH3外的其他6种(类)污染物,排放主要集中在市区,排放源中工业非燃烧过程源均为最大贡献占比,NH3的主要贡献源是氮肥的施用及禽畜排放,其污染分布受耕地分布等因素影响较大.因此,减少工业非燃烧过程源、整合优质高效电力供应、使用清洁能源、严格控制工地扬尘、工业粉尘和做好城区绿化等,能有效地降低兰-白城市群NOx、VOCs、CO、PM10、PM2.5和SO2这6种(类)主要污染物的排放.NH3的减排则主要可从控制氮肥的使用及减少禽畜排放两方面考虑.本研究还利用蒙特卡洛法分析了排放清单的不确定性,NH3的不确定性最大为-31%~30%,CO的不确定性最小为-18%~16%,清单整体可信度较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号