首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用某废弃焦化场地内6眼深层采样孔,样品最大采集深度9. 5~42 m不等,分析包气带剖面上16种PAHs分布特征、污染来源以及影响迁移的因素.结果表明,各钻孔ΣPAHs最大含量介于134. 79~11 266. 81 mg·kg~(-1)之间,主要分布层位为地表以下1~5 m,含量以低环(2+3环)为主,单体以萘含量最高.场地污染主要来自于煤的燃烧源.焦油、沥青及其深加工产物的污染对场地ΣPAHs含量起控制作用.包气带砂卵砾石层作为污染物良好的下渗通道,砂层透镜体通过吸附及截留作用成为PAHs的主要富集层.化产区排放或泄漏的各类油液通过混溶、竞争性吸附等作用增强了PAHs垂向迁移能力,并致使深部包气带受到污染.地表0~1 m土壤受人为扰动、降雨淋滤、降解作用,30 m以下岩层受到地下水溶滤作用,导致低环/高环比例随深度增加呈现先升高后降低的趋势.污染来源、包气带理化指标及水文地质条件等共同作用控制PAHs垂向分布及迁移.  相似文献   

2.
在太湖竺山湾缓冲带选取两种人工草林(杨树灌木混合林和纯杨树林),对其林床地表径流、林下土壤水和林下地下水进行了为期1 a的观测,比较了土壤反硝化作用.结果表明:①两种人工草林林下土壤生化性质、w(有机碳)以及各形态氮质量分数在1 m深度内垂向剖面上的分布大致相同;②两种人工草林内地下水中的ρ(NO3--N)在1 a之内都没有明显升高趋势,显示反硝化作用在土壤水的入渗过程中有效削减了NO3--N,并阻止了其向地下水的迁移;③在垂直剖面上,两种人工草林土壤水中ρ(NO3--N)在40 cm深度处出现峰值,同深度处的ρ(DO)(低至0.08 mg/L)、Eh(氧化还原电位,0~18 mV)也较低,说明40 cm深度附近可能发生了耦合的硝化-反硝化作用;④在垂直剖面上,两种人工草林土壤中反硝化势和反硝化菌数均在40 cm深度附近出现峰值,虽然杨树灌木混合林土壤反硝化势[2.1 mg/(kg·h)]是纯杨树林[1.1 mg/(kg·h)]的2倍,但两种人工草林土壤中实际的反硝化速率受ρ(NO3--N)的限制,没有明显的差别.研究显示,两种人工草林土壤都在40 cm深度附近存在反硝化活跃带.   相似文献   

3.
铅和铬污染包气带及再释放规律的实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
利用有机玻璃柱模拟包气带,研究了Pb2+和Cr6+在污染包气带时的迁移转化规律,以及雨水淋洗受污染包气带中重金属再释放规律.结果表明:包气带受重金属污染过程中,铅和铬在粗砂包气带中的迁移速率分别为7.25cm/d和0.4cm/d,远大于其在细砂包气带中的迁移速率4.46cm/d和0.36cm/d,且Cr2O72-形式存在的六价铬在包气带中的迁移速率比的铅离子迁移速率大10倍以上;在模拟实验中,溶液在通过包气带区域时六价铬还原为三价铬的反应很弱,通过包气带的水样中三价铬未检出,并且包气带介质中三价铬含量(0.006mg/kg)几乎为零;雨水淋洗铬和铅污染的粗砂和细砂包气带模拟研究中铅淋洗溶出率为0.056%和0.112%,铬淋洗溶出率为62.33%和40.36%.因此,Cr2O72-在砂质包气带中的迁移性很强且容易从介质表面淋洗去除,而铅在介质中的迁移性较差且很难从介质中淋洗去除掉.  相似文献   

4.
1株耐冷兼性嗜碱好氧反硝化菌的分离鉴定及反硝化特性   总被引:16,自引:10,他引:6  
王兆阳  陈国耀  姜珂  许培雅 《环境科学》2014,35(6):2341-2348
以传统微生物富集分离方法,从垃圾渗滤液活性污泥中筛选到1株高效好氧反硝化菌,通过形态观察、生理生化特征及16S rDNA序列分析,对菌株进行了鉴定,同时对其好氧反硝化特性和异养硝化功能进行了研究.结果表明,筛选到的好氧反硝化菌株为假单胞菌属(Pseudomonas sp.),命名为GL19,GenBank登录号为(KC710974).碳源、C/N、pH及温度对菌株反硝化活性影响较大.在柠檬酸钠为碳源、C/N不低于15、pH 6~10、溶解氧(DO)4.8~7.7 mg·L-1及温度为15~34℃,硝酸盐氮负荷为140 mg·L-1的条件下,硝酸盐去除率均达100%,总氮(TN)平均去除率为96.5%,最终无亚硝酸盐积累;菌株能以亚硝酸盐氮、氨氮为底物进行高效脱氮,20 h内可将140 mg·L-1的亚硝酸盐氮完全去除,28 h内可将280 mg·L-1的氨氮降至3.11 mg·L-1,氨氮去除率达98.9%.显示该菌具有耐冷、高效脱氮特性,可实现同步硝化反硝化,这对南方地区冬季废水处理具有潜在应用价值.  相似文献   

5.
厌氧-好氧-缺氧短程硝化同步反硝化除磷工艺研究   总被引:4,自引:0,他引:4  
构建了主要由厌氧-好氧-缺氧构成的短程硝化同步反硝化除磷工艺,并在常温条件下用于生活污水的处理.研究发现,通过调节反应器内好氧区的pH(8.2~8.7)和溶解氧(DO为3~5mg·L-1)能实现该工艺的快速启动,在好氧区内实现亚硝酸盐的累积.在稳定运行期内,DO是影响短程硝化的主要影响因素,好氧1区DO控制在1.5~2.0mg·L-1,好氧2区DO控制在0.5~1.0mg·L-1,好氧区内亚硝酸盐氮累积浓度稳定在5~10mg·L-1,氨氮去除率达到90%以上.各反应单元内碳源、硝酸盐和亚硝酸盐对除磷贡献的研究表明,该工艺的缺氧段实现了在不外加碳源的情况下以亚硝酸盐和硝酸盐共同作为电子受体的反硝化除磷,反硝化除磷量占系统总除磷量的80%以上.  相似文献   

6.
为探究不同水温分层水库沉积物间隙水营养盐垂向分布规律及其与细菌群落结构的关系,运用16S rRNA高通量测序技术,分析了2018年1月澜沧江小湾、漫湾水库建库后沉积物细菌群落结构特征,并采用Cannoco软件对细菌群落与环境因子关系进行了冗余分析.结果表明,调查期间小湾水库水体表底温差3. 3℃,最大温度梯度为0. 2℃·m~(-1)属于分层水体,漫湾表底温差0. 1℃属于混合水体.小湾间隙水NH_4~+-N和NO_3~--N平均质量浓度分别为2. 233 mg·L~(-1)和0. 030 mg·L~(-1),漫湾分别为2. 569 mg·L~(-1)和0. 016 mg·L~(-1).间隙水NH_4~+-N在两个水库沉积物中均表现垂向向下增大的趋势,而NO_3~--N垂向变化则不明显但均在深层质量浓度最底,库区间比较来看,只有NO_3~--N具有极显著性差异,其中小湾明显高于漫湾.菌群分类发现,小湾与漫湾沉积物细菌群落具有相同的优势菌门和优势菌属,水温分层对间隙水营养盐及细菌群落结构无显著影响.而漫湾相比小湾沉积物中反硝化菌相对丰度更高,硝化菌和厌氧氨氧化菌相对丰度更低,同一库区沉积物深层中反硝化菌相对丰度较高,有机物降解菌、硝化菌、厌氧氨氧化菌和溶磷菌相对丰度较低,是造成沉积物营养盐库间差异和垂向差异的原因.  相似文献   

7.
周海红  王建龙  赵璇 《环境科学》2006,27(2):290-293
PBS为一种新型可生物降解多聚物(BDPs),可以作为生物膜载体和碳源去除饮用水中的硝酸盐,对该工艺中pH的影响进行了研究.结果表明:PBS颗粒表面可以形成致密的生物膜,对膜内的反硝化菌形成良好的保护作用.PBS反硝化系统承受pH冲击负荷的能力优于传统填料为载体的反硝化系统,当进水pH介于5.0~9.0之间时,反硝化过程中溶液的pH趋向中性,硝态氮的去除速率为0.60~0.63 mg/(g·d),最高达到0.70 mg/(g·d)(pH 7.5~8.0).当溶液中pH在6~8之间时,出水亚硝酸盐不稳定;pH<6时,出水中亚硝酸盐浓度高达0.7 mg/L;pH>8时出水中的亚硝酸盐浓度低于0.1 mg/L.  相似文献   

8.
厌氧-厌氧氨氧化组合工艺作为低能耗脱氮工艺,如何提供适宜比例的亚硝酸盐成为研究的关键问题之一.部分反硝化为稳定提供厌氧氨氧化所需的亚硝酸盐提供了可行途径.本文重点针对厌氧工艺中可能产生的中长链脂肪酸对反硝化过程的影响进行研究,筛选出两株具有反硝化能力的细菌Pseudomonas veronii(W-22)和Pseudomonas alcaliphila(W-39),通过批次试验,考察了中长链脂肪酸和常用碳源对菌株反硝化性能的影响.结果表明,在硝酸盐浓度为100 mg·L~(-1),C/N=15,30℃条件下,W-22利用葡萄糖、W-39利用乙醇和葡萄糖,可在36 h内达到稳定的亚硝酸盐累积,亚硝酸盐最大累积速率(R_m)分别为2.50、5.56和8.35 mg·L~(-1)·h~(-1),亚硝酸盐浓度分别维持在57.11、82.14和80.16 mg·L~(-1);W-39利用己酸钠为碳源的R_m为0.99 mg·L~(-1)·h~(-1),亚硝酸盐浓度逐渐升高至72.34 mg·L~(-1);W-22和W-39利用辛酸钠的反应迟滞期在57 h以上,后期伴随硝酸盐浓度降低和亚硝酸盐浓度升高,R_m分别为0.97和7.17 mg·L~(-1)·h~(-1).在本研究条件下,碳源类型对菌株反硝化进程的影响存在差异.  相似文献   

9.
在厌氧条件下,以亚硝酸盐作为电子受体将甲烷氧化的反硝化厌氧甲烷氧化反应(nitrite-dependent anaerobic methane-oxidizing,n-damo)的发现,彻底颠覆了人们对甲烷循环的传统理解.通过分子生物学方法及13C和15N稳定同位素示踪技术,对河北省北澧河附近的旱地农田土壤(0~1 m)中n-damo菌的群落结构、丰度和活性进行了研究,深入探究了n-damo菌的亚硝酸盐底物来源.结果显示,n-damo菌更多存在于旱地浅层土壤中,并且随季节变化分布在不同深度的土壤中.针对其pmo A基因的系统发育分析显示,旱地土壤中n-damo菌的群落结构具有明显的空间异质性,来自土壤0~20 cm和40~60 cm土层的序列完全分开,处于系统发育树不同分枝.针对其16S rRNA基因的实时荧光定量PCR结果显示,n-damo菌丰度随土壤深度的增加而降低,夏季丰度(1.44×10~4~1.02×10~5copies·g~(-1))低于冬季(3.66×104~2.67×105copies·g-1).在浅层土壤(0~20 cm)中,硝化反应和反硝化反应共同为n-damo菌提供亚硝酸盐底物来源;而在深层土壤(60~80 cm)中,亚硝酸盐底物主要来源于硝化反应.n-damo菌的活性(0.18 nmol·g~(-1)·d~(-1),以CO_2计)只能在夏季表层土壤(0~20 cm)中检测到,其余深度均未检测到其活性.在旱地农田土壤中,反硝化厌氧甲烷氧化菌对农田碳循环的影响可能不大.  相似文献   

10.
以低C/N值生活污水为处理对象,重点考察了以厌氧/缺氧(A/A)运行的ABR耦合好氧MBR系统启动过程中脱氮除磷特性及系统长期运行的稳定性.结果表明,控制ABR容积负荷(VLR)为0. 8 kg·(m3·d)-1,污泥回流比为80%,硝化液回流比从150%逐步提升稳定至300%,反硝化除磷功能区污泥停留时间(sludge retention time,SRT)为25 d,MBR溶解氧(DO)为1~2 mg·L~(-1),温度为30℃±2℃,于46 d成功富集了反硝化聚磷菌(denitrifying phosphorus bacteria,DPBs),净释磷量为20. 56 mg·L~(-1),净吸磷量达到27. 74 mg·L~(-1),批次实验表明约84. 8%的聚磷菌(PAOs)能够利用NO-3-N作为电子受体进行反硝化除磷.启动成功后稳定运行50 d,对COD、NH+4-N、TN和PO_4~(3-)-P的平均去除率分别为91. 8%、99. 0%、71. 5%和94. 2%,系统缺氧反硝化除磷去除1 mg·L~(-1)的PO_4~(3-)-P,同步消耗约0. 83 mg·L~(-1)的NO-3-N,满足同步脱氮除磷的要求.  相似文献   

11.
高氨氮对具有回流的PN-ANAMMOX串联工艺的脱氮影响   总被引:3,自引:3,他引:0  
李祥  崔剑虹  袁砚  黄勇  袁怡  刘忻 《环境科学》2015,36(10):3749-3755
采用具有气升回流的部分亚硝化-厌氧氨氧化串联工艺研究了进水氨氮浓度对其氮素转化特性和微生物群落的影响.结果表明,在恒定氮容积负荷2.8 kg·(m3·d)-1的条件下,当进水氨氮浓度上升到700 mg·L-1时,好氧区和厌氧区的p H值波动很小,FA浓度分别维持在5 mg·L-1、10 mg·L-1左右,未对功能微生物产生抑制.好氧区的亚硝酸盐生成速率稳定在1.5kg·(m3·d)-1,厌氧区的氮去除速率稳定在31.49 kg·(m3·d)-1,联合工艺的总氮去除速率稳定在1.67 kg·(m3·d)-1.当进水氨氮浓度上升到900 mg·L-1时,各区域FA和FNA浓度才出现上升,联合工艺的总氮去除速率稳定在1.52 kg·(m3·d)-1.厌氧区出现亚硝酸盐的积累,厌氧氨氧化细菌的活性未出现明显的抑制现象.说明在联合工艺运行过程中,回流可有效地缓解各区域p H值的大幅波动,同时稀释了高氨氮浓度所形成的FA对功能微生物的毒性作用.  相似文献   

12.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   

13.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

14.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

15.
同步脱氮除磷颗粒污泥硝化反硝化特性试验研究   总被引:4,自引:4,他引:0  
在厌氧/好氧交替运行的SBR反应器中,以成熟的脱氮除磷颗粒污泥为研究对象,对其硝化及反硝化特性进行研究.结果表明,静态试验中颗粒污泥的最大硝化速率为14.13 mg·(g·h)-1,最大反硝化速率为34.89 mg·(g·h)-1,最大缺氧吸磷反硝化速率为13.11 mg·(g·h)-1,污泥具有较好的硝化、反硝化性能;反应器中污泥最大硝化速率为4.60 mg·(g·h)-1,最大反硝化速率为1.43 mg·(g·h)-1;通过N的物料平衡得到,同步硝化反硝化反应去除N约为232.5 mg·d-1,占N去除总量的54.3%;另外,颗粒污泥对P和N的去除率分别在95%和90%左右,反应器具有较好的同步脱氮除磷效果.  相似文献   

16.
根据试验结果和物料平衡分析,揭示了连续流单污泥污水处理系统在不同主要缺氧段硝酸盐氮质量浓度[c(NO3)]条件下运行时的PHA、TP代谢规律,从反应机制方面评价以c(NO3)作为连续流单污泥污水处理系统运行控制参数的有效性.采用PLC自动控制系统,以硝化液内循环流量作为被控变量,基于反馈控制结构,在c(NO3)设定值分别为0.5、1.0、1.5、2.0、2.5、3.0、3.5以及4.0 mg·L-1的条件下进行试验研究,进水水质及其他运行设计参数保持不变.结果表明,当c(NO3)设定值为2.5mg·L-1时,厌氧段和预缺氧段PHA合成并贮存量、主要缺氧段PHA降解量、厌氧段和预缺氧段磷释放量、系统总吸磷量以及主要缺氧段磷吸收量等均达到最大值,分别为35.32、1.71、20.44、6.16、0.32、8.04、3.67 g·d-1.这从PHA和TP代谢机制角度进一步证实了c(NO3)可作为连续流单污泥污水处理系统的运行控制参数,其最佳设定值为2.5 mg·L-1.  相似文献   

17.
1株异养硝化-好氧反硝化细菌DK1的分离鉴定及其脱氮特性   总被引:7,自引:3,他引:4  
从某反应器活性污泥中分离筛选出1株假单胞菌属(Pseudomonas sp.)细菌,命名为DK1,并对该菌进行脱氮特性研究.在以葡萄糖为碳源,C/N量比为5时,分别以NaNO_3和NaNO_2为氮源,二者的好氧反硝化速率为4.09 mg·(L·h)-1和4.43mg·(L·h)~(-1).以二者同时为氮源脱氮率为100%;此外,菌株DK1具有异养硝化性能,NH_4~+-N平均去除速率为2.32mg·(L·h)-1.缺氧时以NO_2~--N为氮源菌株DK1可将一系列梯度浓度NO_2~--N(约100~300 mg·L-1)在36 h内降为0.当NO_3~--N和NO_2~--N同时存在时,菌株DK1会优先利用NO_3~--N进行反硝化.同时该菌株还具有同步硝化反硝化(SND)性能,可同时去除NH_4~+-N、NO_2~--N或NH_4~+-N、NO_3~--N,30 h内脱氮率分别达95.06%和94.69%.相同时间内在NH_4~+-N、NO_2~--N和NO_3~--N三者均存在时,脱氮效果最佳,达100%.菌株DK1的高效SND及反硝化性能表明其在处理含氮废水方面有一定的潜力和应用价值.  相似文献   

18.
张雯  尹琳  周念清 《环境科学》2018,39(9):4150-4160
地下水流速及物质间反应均处于缓慢状态,因此向地下水环境中投加的修复材料应具有缓释性.本研究针对浅层地下水特性及氮赋存特征,以农业废弃物和零价铁(Fe0)为基料,耦合生物、化学反应,开展具有物化-生境协同作用的缓释碳源材料的研发和性能研究.所研发材料具有内核和外壳双层结构.内核为修复基质层,由农业废弃物与Fe0等原料组成.其中,农业废弃物提供微生物所需碳源,Fe0还原水体中硝酸盐氮及DO,快速脱氮并促进厌氧环境形成.外壳为溶质运移渗透层,由原生矿物等组成,可包覆内核材料,减缓内核碳源释放、吸附二次污染物.材料物理测试显示,其内核均匀交联,外壳呈明显均匀孔隙结构(SEM),颗粒强度高达每颗80~105 N,具有良好的机械抗压性;材料密度最低可达1.1 g·cm~(-3),无水中漂浮现象;缓释实验表明,该材料具有良好的碳源缓释性,其总有机碳(TOC)释放量[Max:21~25 mg·(g·L)~(-1)]和速率[Max:0.185 mg·(g·L·d)~(-1)]始终呈现平稳状态,而农业废弃物释碳量[Max:53~75 mg·(g·L)~(-1)]及速率[Max:0.455mg·(g·L·d)~(-1)]波动较大.进一步功能基因丰度分析,材料浸出液有利于反硝化细菌代谢活动.脱氮和捕氧实验初期,该材料体系以Fe0化学脱氮为主,并降低水体DO,有利于反硝化进行;随后,生物反硝化占主导地位,材料脱氮率与其Fe0含量相关性变小,体系形成物化-生境协同脱氮途径.  相似文献   

19.
目前运行容易失稳已成为制约厌氧氨氧化(ANAMMOX)工艺应用的因素之一.在保证底物不抑制的条件下,通过对实验室前期运行失稳的连续流全混反应器(CSTR)中的厌氧氨氧化污泥进行活性恢复,研究了滞留的基质浓度对ANAMMOX污泥恢复过程中颗粒化及活性的影响.结果表明,经过126d运行,ANAMMOX污泥活性获得恢复且脱氮能力明显提升.控制高、低基质浓度水平的2个反应器均能实现污泥的颗粒化及氮素的高效去除,NRR最大分别达到16. 97 kg·(m~3·d)~(-1)和14. 43 kg·(m~3·d)~(-1).随着反应器脱氮能力的提高(污泥颗粒粒径增大),R1、R2两个反应器内污泥的胞外聚合物EPS含量(以VSS计)均增大,分别由接种时的34. 45 mg·g~(-1)增大至77. 52 mg·g~(-1)和94. 18 mg·g~(-1),PN/PS由1. 89分别增大到6. 25和6. 84.在一定范围内,PN/PS比值增大有利于ANAMMOX污泥颗粒化,但PN/PS过大会导致颗粒污泥结构失稳上浮,加剧污泥流失现象.  相似文献   

20.
3种生物滞留设计对城市地表径流溶解性氮的去除作用   总被引:4,自引:2,他引:2  
城市地表径流溶解性氮(N)的有效控制具有挑战性.2015构建了3种不同设计的生物滞留设施:壤砂种植紫穗狼尾草(CB)、壤砂种植紫穗狼尾草设置饱和带(MB1)、壤砂种植紫穗狼尾草设置饱和带并添加10%木块(MB2).在模拟城市地表径流水文、水质变化条件下,研究3种生物滞留种植植物、设置饱和带以及添加碳源对城市地表径流溶解性N(NH_4~+-N、NO_3~--N)的去除作用.通过为期1年试验监测表明,在进水NH_4~+-N浓度平均值为(5.45±2.21)mg·L-1情况下,3种生物滞留对NH_4~+-N均具有显著的去除作用(去除率95%).基质吸附、硝化与植物吸收是生物滞留有效去除城市地表径流NH_4~+-N的主要途径.在进水NO_3~--N平均值为(5.88±2.32)mg·L-1情况下,CB、MB1和MB2出水NO_3~--N浓度的平均值分别为(4.04±2.64)、(0.84±1.18)和(0.26±0.48)mg·L-1,相应去除率分别为31.3%、85.7%和95.6%.生物滞留种植紫穗狼尾草、设置饱和带以及添加碳源均可显著降低出水NO_3~--N浓度,减少NO_3~--N淋溶输出,提高NO_3~--N去除率.植物吸收和微生物反硝化是生物滞留去除NO_3~--N的主要途径.进水NO_3~--N浓度、水量、间隔天数是影响生物滞留出水NO_3~--N浓度的主要因素.生物滞留种植紫穗狼尾草、设置饱和带并添加碳源,在水文、水质变化情况下,仍可有效去除城市地表径流溶解性N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号