首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
通过调查收集长三角区域民航飞机构成、起落架次及发动机排放因子数据,以2017年为基准年,建立了长三角区域民航飞机起飞着陆(Land take-off, LTO)循环大气污染物排放清单.结果显示,2017年长三角区域民航飞机LTO循环NO_x、HC、CO、SO_2和PM年排放总量分别为16429.6、734.4、8234.3、1159.6和125.7 t.爬升阶段的NO_x、SO_2和PM排放贡献相对较高,分别达到47.2%、29.6%和36.2%,滑行阶段的HC和CO排放占比突出,分别达到95.4%和95.4%.从空间分布来看,长三角地区民航飞机LTO循环排放主要集中在上海浦东国际机场、上海虹桥机场、杭州萧山机场和南京禄口机场.从月分布来看,3—8月民航飞机LTO循环排放最为集中.从小时分布来看,上午7:00—9:00存在排放高峰,航班起落架次和边界层高度是决定LTO循环排放量的主要因素.为提升民航飞机大气污染物排放清单估算的准确度,建议在后续研究中加强对在用民航飞机大气污染物排放因子实测和实际活动水平的调查,以降低排放清单的不确定性.  相似文献   

2.
京津冀机场群飞机LTO大气污染物排放清单   总被引:7,自引:0,他引:7  
韩博  孔魏凯  姚婷玮  王愚 《环境科学》2020,41(3):1143-1150
基于国际民航组织(ICAO)标准排放模型,调查搜集京津冀机场群9个机场实际航班情况,充分考虑了大气混合层高度的影响,采用EPA方法修正运行时间,精确估算了2018~2019航季年(364 d)京津冀机场群飞机起飞着陆循环(LTO)大气污染物排放清单.结果表明, 2018~2019航季年京津冀机场群飞机LTO循环NO_x、 CO、 SO_2、 HC和PM排放总量分别为10 720.5、 3 972.2、 407.8、 508.0和53.7 t.其中,冬春航季排放量分别为4 290.2、 1 646.7、 168.3、 220.1和22.4 t;夏秋航季排放量分别为6 430.3、 2 325.5、 239.5、 287.9和31.3 t.从空间分布来看,北京首都机场是该机场群大气污染物排放量最多的机场.从时间分布来看,07:00~08:00处于排放量最高峰, 12:00~20:00处于中等偏高排放水平, 21:00之后排放量相对较低.飞机在LTO循环中NO_x和CO排放量较多,PM排放量最少.各污染物不同工作模式下的排放情况差异明显.在该机场群起降所有机型中,B777单位LTO循环排放污染物最多,B737最少,B787单位LTO循环排放HC最低.  相似文献   

3.
中国民航机场飞机起飞着陆(LTO)循环排放量估算   总被引:24,自引:10,他引:14  
为了估算飞机在民航机场的污染物(HC、CO、NOx、SO2)排放量,基于国际民航组织(ICAO)标准中的起飞着陆(LTO)循环概念,采用其发动机排放数据库(Engine emission data bank),结合我国民航机队资料和民航飞行数据,通过计算全国123个机场1周内飞机LTO循环的气体污染物排放量,拟合出LTO循环数与各种污染气体排放因子的关系.结果表明,2002~2006年民航机场LTO循环排放量分别为24680.54、24701.30、31084.55、35633.84、40645.55t;2006年我国全民航机场飞机LTO循环HC、CO、NOx、SO2的排放量分别为1514.48、14341.16、23095 19、1694.71t,旅客吞吐量前20位的机场排放占全国排放总量的68.25%.考察对比了2003及2004年度全国7大空域的机场飞机LTO循环排放分布,结果表明,在标准LTO循环的进近、滑行、起飞以及爬升4种模式中,滑行段所排放的污染物约占整个循环的50%,滑行时间降低4min,排放总量降低6%.  相似文献   

4.
根据航班实际飞行数据估算机场飞机主发动机排放量,可以提升机场排放清单编制的准确度.基于北京首都机场某日运行数据和国内1326架次航班的机载飞行数据(QAR数据),研究了基于飞行数据的机场飞机主发动机排放清单制定方法.采用一阶近似3.0(FOA3.0)方法补充国际民航组织发动机排放数据库颗粒物基准排放指数,结合QAR数据,应用波音燃油流量法2(BFFM2)估算了实际飞行条件下污染物排放指数,编制了首都机场该日飞机主发动机排放清单,分析了首都机场航班排放特征.在此基础上,探讨了结合实际数据本地化的着陆和起飞循环,以期为机场飞机主发动机排放量的快速准确核算提供新的思路.结果发现,该日航班主发动机HC、CO、NO_x和PM_(2.5)排放量分别为933.9、10967.8、14703.5和85.5 kg,较标准LTO循环估算结果的偏差分别为15.6%、13.2%、-29.1%和-18.9%.NO_x排放主要集中在起飞和爬升阶段,占其排放总量的68.0%;HC和CO排放主要集中在滑行和慢车阶段,分别占其排放总量的90.0%和88.0%;PM_(2.5)在各飞行阶段的排放较为平均.对于单位LTO循环,航班滑行过程中平均排队等候(地速为零)时间为7.7 min,产生的HC、CO、NO_x和PM_(2.5)分别占总滑行阶段对应污染物排放量的26.3%、27.5%、25.7%和27.5%,这一部分排放量有望通过场面运行优化进一步控制.  相似文献   

5.
尤倩  李洪枚  伯鑫  郑昀  陈少博 《中国环境科学》2022,42(10):4517-4524
基于2017~2020年中国民用航空局飞机起降数据、机队配置数据和国际民航组织(ICAO)飞机发动机排放因子数据库等数据,自下而上编制了2017~2020年中国民用航空机场高分辨率飞机起飞着陆(LTO)循环大气污染物及碳排放清单,在此基础上探究中国民用航空机场大气污染物和碳排放时空分布特征.分析2000~2020年3次疫情(2003年非典、2012年中东呼吸症、2020年新冠疫情)对机场大气污染物及碳排放影响.结果表明,2020年中国民航机场LTO循环NOx、CO、HC、SO2、PM和CO2排放量分别为10.90,8.22,0.96,0.28,0.06,1360.27万t;HC、CO、SO2、CO2在滑行阶段排放量最大,分别占总排放量的92.80%、91.56%、41.81%、41.81%.NOx、PM在爬升阶段排放量最大,分别占总排放量的47.93%、37.39%;2017~2019年我国民航机场飞机LTO循环大气污染物及碳排放总量呈现逐年增长的趋势,受新冠疫情影响2020年排放总量下降22.39%;排放集中在经济较为发达的华东地区.在2000~2020年3次疫情中,新冠疫情对我国民航机场飞机LTO循环排放量影响最显著.  相似文献   

6.
一次航班飞行全过程大气污染物排放特征   总被引:6,自引:2,他引:4  
飞机发动机以航空煤油为燃料,在运行过程中会排放多种大气污染物,对空气质量和人体健康存在较大影响.选择A320作为典型机型,提取了一次真实航班飞行过程中的机载飞行数据,基于BM2及BM2-FOA耦合模型,获得了其在飞行全过程中每一时刻CO、UHC、NO_x及PM_(2.5)的排放指数,并计算了CO、UHC、NO_x、SO_2、CO_2及PM_(2.5)的精确排放量.结果表明,飞行过程中CO和UHC排放指数与推力变化趋势相反,数值范围分别为0.67~595.34 g·kg~(-1)和0.05~0.43 g·kg~(-1).NO_x排放指数与燃油流量变化趋势一致,数值范围是0.96~114.25 g·kg~(-1).PM_(2.5)排放指数全过程变化较小,约为0.25~0.36 g·kg~(-1).飞行全过程中,CO_2排放总量最大,约为2.0×10~4kg.同时,NO_x的排放量约为213.4 kg,SO_2也排放了24.5 kg.CO、PM_(2.5)和UHC的排放量分别为7.5、2.2和0.5 kg.将本次精确计算结果与使用ICAO基准模型对LTO起降阶段的估算结果进行对比后发现,基准模型LTO飞行时间较真实时间偏长37%.基准模型估算LTO阶段CO、UHC污染物排放量偏高,NO_x偏低,且偏差较大;而SO_2、CO_2和PM_(2.5)的排放量估算结果偏差相对较小.与机动车相比,A320飞机的一次LTO起飞着陆飞行,NO_x排放量约等于一辆小客车行驶8.6×10~4km,或相当于1274辆小客车1 d的排放量.  相似文献   

7.
民航飞机起飞过程气态污染物排放特征分析   总被引:8,自引:2,他引:6  
韩博  黄佳敏  魏志强 《环境科学》2016,37(12):4524-4530
民航飞机在起飞过程中发动机推力高、耗油量大,并且飞行高度低,由其排放的污染物对局地空气质量和人体健康存在较大影响.选择B737-800作为典型机型,通过对飞机性能参数的模拟,精确计算了其在全推力和减推力等多种方式下起飞离场爬升至1 000 m高度过程中NO_x、CO、HC和SO_2的排放量,并与ICAO基准模型估算结果进行对比.结果表明,NO_x是排放量最大的污染物.其中,全推力起飞过程4种污染物的排放量分别为4.849、0.062、0.031和0.229 kg.减推力起飞方式下,选择更高的灵活温度后,NO_x和CO排放量分别降低和升高,HC和SO2排放量变化不大.经过对比发现,ICAO的基准排放模型,对4种污染物的估算结果存在较大偏差.与机动车相比,单次全推力起飞过程与一辆小客车行驶9 508 km的NO_x排放量相当.精确计算方法为准确估算机场区域飞机污染排放清单提供基础.  相似文献   

8.
本研究结合北京大兴国际机场(PKX)运营后一年间的实际航班飞行数据,参考国际民航组织(ICAO)最新发布的飞机发动机排放数据库(EEDB),建立了大兴机场飞机起飞着陆循环(LTO)大气污染物排放清单,将排放清单分为试运营、新冠疫情和常态化3个阶段,利用ADMSAirport模型模拟评估了不同阶段机场排放大气污染物对周边地区的空气质量影响.最后,创新性地提出一种基于航班活动水平和气象要素的预测方法,预测了中长期规划下,机场对未来的大气环境影响.结果表明,研究期间内北京大兴国际机场LTO循环CO、NOx、HC、SO2和PM的排放量分别为389.55、574.37、31.21、45.22和4.85 t,其中NOx和CO是主要排放污染物,分别占总排放污染物的54.9%和37.3%.CO和HC排放主要分布于滑行阶段,分别占该污染物总排放量的93.4%和94.1%,而NOx排放主要集中在起飞和爬升阶段,约占其排放总量的63.7%.在该机场起降所有机型中,B738排放污染物总量最高,A332/333单位LTO循环排放的PM最高.空气质...  相似文献   

9.
将基于标准起飞着陆(LTO)循环各阶段工作时间的飞机排放量计算方法加以改进,利用AMDAR资料计算飞机的有效排放高度,进而准确计算出基于逐架飞机的大气污染物排放总量.结果表明,首都国际机场2013年飞机NOx、CO、HC、SO2和PM2.5排放总量分别为7042.1t、3189.9t、295.3t、429.4t和150.4t.与传统的基于LTO循环的方法相比,修正后的首都机场飞机NOx、CO、HC和SO2排放增加了23.5%、2.3%、2.1%和18.1%.飞机排放的CO、HC、SO2和PM2.5月变化较小,NOx排放受飞机有效排放高度影响月波动较大.1~2月飞机污染物排放量处于全年最低水平,8月各污染物排放达到峰值.此外,飞机在爬升和滑行/慢车两种模式下污染物排放比例最大,分别占排放总量的37.7%与36.8%.  相似文献   

10.
基于郑州新郑国际机场的飞行数据和国际民航组织发动机排放数据库,获得2019年飞机实际飞行时间,测算了全年所有机型飞机 主发动机的污染物排放因子,建立了包括飞机及地面特种车辆在内的机场精细化大气污染物排放清单.结果表明,新郑国际机场飞机运行时间对典型机型耗油量影响明显,月际变化趋势一致.典型机型的本地化污染物排放因子的差异,与各飞行阶段的耗油量和单位燃油污染排放量密切相关,其中,波音B738机型运行占比最大且排放因子较高.2019年新郑国际机场NOx、CO、HC、SO2和PM的总排放量分别为1207.7、921.2、123.7、268.3和36.2 t,主要来自飞机主发动机排放.研究期内,各类污染物排放均在11:00达到峰值.飞行阶段中,NOx排放主要来自飞机在 起飞降落循环中的爬升阶段,占比达45.6%;CO和HC在地面滑行阶段的排放占比远高于其他运行阶段,分别占95.4%和93.9%;SO2和PM在不同工作模式下的排放占比较为接近.各机型中,波音B738和空客A320两种机型在5类污染物排放量中贡献最大,波音B737机型排放CO较高.  相似文献   

11.
航空器场面滑行污染物排放计算研究   总被引:3,自引:0,他引:3  
李楠  张红飞 《环境科学学报》2017,37(5):1872-1876
分析了航空器发动机排放污染物种类,介绍了标准起飞着陆循环(LTO)与航空器全发滑行方式下油耗与排放计算模型,建立了单发滑行、牵引滑行、APU电力驱动滑行3种滑行方式的油耗与排放计算模型.采用油耗与排放修正模型,对航空器场面滑行阶段因外界温度、气压、湿度等因素造成的油耗系数与排放系数改变进行修正.以上海虹桥机场为例,计算了不同滑行方式下各机型污染物气体排放量.计算结果表明:采用单发滑行与APU电力驱动滑行可降低航空器场面滑行阶段HC、CO和NOx的排放量,牵引滑行对NO_x的排放影响不大,但可明显降低HC、CO的排放量.  相似文献   

12.
民航飞机在LTO起降阶段的飞行中,发动机污染物排放的源强和空间位置是动态的.为准确定量评估其影响,构建了飞机LTO污染排放影响评估耦合模型.首先利用飞行动力学模型,模拟飞机LTO飞行轨迹,并获得轨迹中每一位置点的性能参数(实时燃油流量);再通过排放计算模型,确定每一位置点的污染物排放量(源强);在此基础上,基于拉格朗日烟团模型,针对飞机烟团排气特点进行修正,实现污染扩散模拟.最后采集了一架典型飞机在一个完整LTO飞行过程中的机载数据,结合实时气象参数,进行了实例应用研究.结果显示.在LTO过程中NOx、SO2、CO、PM和HC的平均排放速率分别为17.71、2.21、1.05、0.20和0.03g/s;飞机在起飞离地时刻,烟团扩散范围集中于跑道附近及侧向300m、纵向3000m范围内,NOx地面最大浓度超过100mg/m3;当飞机爬升至混合层顶完成起飞时,地面污染物扩散至侧向1200m范围,NOx浓度降至298.5μg/m3,依然较为严重,其他污染物地面浓度相对较低.  相似文献   

13.
通过建立2012年长株潭区域机动车尾气排放清单,分析了区域内机动车尾气排放特征,研究了排放的时空分配因子,并对清单进行了不确定性分析。结果表明:2012年长株潭区域道路机动车尾气CO、HC、NO_x、PM_(2.5)、PM_(10)、VOCs、NH_3排放量分别约为11.86、1.78、3.88、0.23、0.26、2.52、0.06万t。其中,载货汽车是NOx、PM、PM2.5的主要贡献源,载客汽车和摩托车是CO主要贡献源,摩托车是VOCs的主要贡献源,而载客汽车是NH3的主要贡献源。国I前标准车辆对CO、HC、VOCs的贡献率分别约为33.5%、31.8%、53.9%,国I标准车辆CO、HC、NO_x、PM_(2.5)、PM_(10)、VOCs、NH_3的贡献率分别约为38.6%、40.4%、47.4%、54.1%、54.1%、17.1%、16.2%,均高于车辆保有量的占有率,因此控制尾气排放应从国I前、国I车入手。此外,一周中工作日,每天08:00和17:00排放量占比较大,城区的空间分配因子明显高于郊区及乡镇区域,城镇居民使用车量对机动车尾气排放量影响较大。道路机动车排放清单估算过程中不确定性主要来自活动水平数据,尤其是平均行驶里程的选取上。  相似文献   

14.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

15.
韩博  何真  张铎  孔魏凯  王愚 《中国环境科学》2020,40(12):5182-5190
针对2018~2019航季年粤港澳大湾区机场群,通过实际滑行时间修正和大气混合层高度对爬升/进近时间的修正,获得飞机主发动机排放因子和区内机场加权排放因子,同时考虑飞机辅助动力装置的排放,建立了区内飞机起飞着陆(LTO)污染排放清单.结果表明,区域内各机场污染物排放因子存在较大差异,主要来源于实际运行时间的修正以及各个机场不同的机型占比,其中NOx、CO、HC、SO2、PM 5类污染物的加权排放因子区内均值分别为17.58,8.60,0.79,1.37,0.15kg.排放量分别为15327.4,8066.7,728.4,1186.1,121.9t,绝大部分来自飞机主发动机排放.研究期内,NOx排放量在年内呈现夏秋季高、冬春季低的变化趋势,其他污染物排放量变化较为平缓.所有污染物在各机场排放量的次序较为一致,香港、广州白云分列前两位.各机型中,区内NOx及SO2主要来自A320排放,所占比例分别为19.5%、17.1%;CO及HC排放占比最大的机型均为A321,分别为25.4%、27.2%;PM排放量占比最大的机型是B738,约为23.1%.  相似文献   

16.
韩博  何真  张铎  孔魏凯  王愚 《中国环境科学》2021,40(12):5182-5190
针对2018~2019航季年粤港澳大湾区机场群,通过实际滑行时间修正和大气混合层高度对爬升/进近时间的修正,获得飞机主发动机排放因子和区内机场加权排放因子,同时考虑飞机辅助动力装置的排放,建立了区内飞机起飞着陆(LTO)污染排放清单.结果表明,区域内各机场污染物排放因子存在较大差异,主要来源于实际运行时间的修正以及各个机场不同的机型占比,其中NOx、CO、HC、SO2、PM 5类污染物的加权排放因子区内均值分别为17.58,8.60,0.79,1.37,0.15kg.排放量分别为15327.4,8066.7,728.4,1186.1,121.9t,绝大部分来自飞机主发动机排放.研究期内,NOx排放量在年内呈现夏秋季高、冬春季低的变化趋势,其他污染物排放量变化较为平缓.所有污染物在各机场排放量的次序较为一致,香港、广州白云分列前两位.各机型中,区内NOx及SO2主要来自A320排放,所占比例分别为19.5%、17.1%;CO及HC排放占比最大的机型均为A321,分别为25.4%、27.2%;PM排放量占比最大的机型是B738,约为23.1%.  相似文献   

17.
针对我国目前缺乏机场大气污染贡献模拟研究现状,以首都国际机场为例,应用EDMS模型和AERMOD模型展开了大型机场污染排放及扩散模拟研究。综合考虑飞机发动机、辅助动力设备(APU)、地面保障设备(GSE)、场内机动车等污染源,以2012年为基准年,计算首都国际机场大气污染物年排放量及对周围大气环境质量的影响。结果表明:首都国际机场的CO、NO_x、VOC、SO_2和PM_(10)排放量分别为2 497.36,3 117.93,259.87,188.12,27.78 t,飞机发动机是机场最主要的污染源。机场造成的NO_x年均贡献浓度较大,NO_x年均浓度超标主要集中在机场内。  相似文献   

18.
王凯  樊守彬  亓浩雲 《环境科学》2020,41(6):2602-2608
利用车载排放测试技术对典型的联合收割机、拖拉机、农用运输车和农田建设机械实际工况下的尾气进行测试,建立了实际工况下农业机械的排放因子和2017年北京市农用机械排放清单.结果表明,不同的工作状态对农业机械尾气排放有较大的影响,怠速和行走时CO、NO_x、HC和PM排放趋于平稳;而切地和翻地模式下的波动较为明显.根据各类机械的分类和排放标准对排放因子进行细化,建立了较为完整的实际工况下的排放因子.根据农业机械排放因子和燃油消耗量计算出2017年北京市CO、NO_x、HC和PM的排放量分别是2 566.60、 1 239.29、 563.08和538.32 t.拖拉机、运输机械和联合收割机的污染物总量占CO、NO_x、HC和PM这4种污染物总量的98%、 95%、 95%和98%.因此,农用拖拉机、运输机械和联合收割机在农业机械污染减排中应作为重点控制对象.  相似文献   

19.
成都市非道路施工机械排放清单研究   总被引:4,自引:1,他引:3  
随着大气污染控制形势的日益严峻,非道路移动源排放日益受到关注.本研究通过软件调研获得了成都市非道路施工机械保有量、功率分布,通过现场及文献调研获得了非道路施工机械活动水平数据.参照《非道路移动污染源排放清单编制技术指南(试行)》中的方法,计算了成都市2018年非道路施工机械排放清单.结果表明,2018年成都市非道路施工机械PM、HC、NO_x和CO的排放量分别为845、2898、16738、11231 t.按机械类型划分,挖掘机4项污染物排放占比最高,PM、HC、NO_x和CO分别占59%、61%、59%和62%;按排放阶段划分,国2机械4项污染物排放占比最高,PM、HC、NO_x和CO分别占55%、66%、68%和65%.排放清单结果的不确定性受到多种因素的影响,其中影响最大的为排放因子.  相似文献   

20.
基于微脉冲激光雷达提取的混合层高度与首都机场的实际运行数据,采用美国EPA方法,更准确的估算了2016年首都国际机场航空器排放清单.结果表明:在航空器起飞着陆(LTO)循环排放的各种污染物中,NOx和CO排放量最多,分别占排放总量的53.3%和38.5%.滑行阶段和爬升阶段的排放总量较多,占排放总量的49.7%和25.7%.滑行阶段是航空器排放CO、SOx、HC和PM的主要阶段.在滑行阶段的主要排放物是CO和NOx,分别占滑行阶段排放总量的71.7%和17.2%.混合层高度变化对航空器排放的NOx与CO影响最大,对SOx、HC与PM影响较小.在所有的起降航班机型中,A320对排放影响最小,B77W影响最大.航空器场面滑行时间是影响污染物排放量的一个非常重要的因素.优化航空器滑行效率,减少滑行时间,对减少机场排放量会有非常积极的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号