首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
太滆南运河入湖河口沉积物氮素分布特征   总被引:8,自引:2,他引:6  
为研究入湖河口沉积物中氮素的存在形态和空间分布状况,于2012年4月在太滆南运河入湖河口区采集沉积物柱状样品并对沉积物中的氮素进行了测定分析.结果表明,NH+4-N、TN和Org-N在表层沉积物中的沉积具有一定的同步性.NH+4-N与Org-N、TN均呈显著正相关(P<0.05),Org-N和TN呈极显著正相关(P<0.01);Org-N是入湖河口表层沉积物氮素的主要成分,平均值为2 843.77 mg·kg-1,占TN的质量分数为93.38%;氮素的水平分布存在差异:TN和Org-N的含量在入湖河干流延伸方向上,随距离的增加而逐渐降低,在偏离干流延伸方向上,呈"W"型波动变化.NH+4-N含量在距河口100 m内迅速下降,100 m后在波动中保持低水平.NO-3-N含量在0~800 m内保持平衡,800 m后迅速升高;氮素的垂直分布存在差异:在入湖河干流延伸方向,NH+4-N含量随沉积物深度的增加而升高,NO-3-N呈现出底层富集向表层富集转变的趋势,TN和Org-N的含量自表层向底层富集.  相似文献   

2.
洱海上覆水不同形态氮时空分布特征   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究洱海上覆水各形态氮时空变化特征及其环境效应,收集了1992~2009年洱海上覆水总氮数据,逐月调查了2010年上覆水各形态氮含量.结果表明,1992~2010年洱海上覆水TN含量在0.20~0.67mg/L之间,总体呈上升趋势.2010年上覆水TN年均值为0.57mg/L,DTN为0.41mg/L,NH4+-N为0.17 mg/L,NO3--N为0.086 mg/L,DON为0.15mg/L,颗粒态氮(PN)为0.16mg/L,满足Ⅲ类水体要求;TN、DTN和DON北部最高,NH4+-N和NO3--N中部最高、PN南部最高;上覆水各形态氮年内呈先升后降趋势,TN、DON和PN在7月份达到最高值,DTN和NO3--N在9月份达到最高值,NH4+-N在6月份达到最高值;上覆水TN、DTN、DON和PN垂向分布底层最高,表层次之,温跃层12m处出现峰值.上覆水氮形态时空分布主要受外源氮输入影响,内源氮释放以DON和PN形态为主,NH4+-N和NO3--N分布受水生植物分布影响较大,TN是影响藻类季节性变化的主要因子.洱海营养水平受上覆水氮浓度影响较大,应以控制外源氮输入为重点,特别是雨季之初6、7月份,北部“三江”流域是重点控制区域.  相似文献   

3.
大辽河主要污染源营养盐输入特征   总被引:2,自引:0,他引:2  
为了解大辽河主要污染源包括上游浑河、太子河及其支流海城河和沿程排污口等对大辽河营养盐输入特征,通过国标测定方法,于2013年7月对13个采样点各形态N、P质量浓度的变化和百分含量进行研究.结果表明,大辽河上游来水中浑河DON、太子河NO-3-N、海城河NH+4-N、PO3-4-P、DOP质量浓度较高,与地表水环境质量标准(GB 3838-2002)相比,除太子河TP表现为Ⅳ类水质外,其余TN、TP均表现为劣Ⅴ类水质,浑河水体中N形态以DON为主,而太子河和海城河以NO-3-N为主,除海城河水体P形态以DOP为主外,其余均以TPP为主.主要排污口中TN均表现为劣Ⅴ类水质,TP则为Ⅳ至劣Ⅴ类不等,其中纱厂潮沟、港监潮沟这2个排污口NH+4-N、TN和TP质量浓度均最高,但主要排污口水体N形态均以DIN为主,水体P形态则表现不一.而大辽河TN、TP质量浓度较高,超过地表水环境质量标准的Ⅴ类限值,且NO-3-N和TPP分别是其主要形态.总体上,通过对大辽河上游来水、排污口与大辽河干流营养盐分析表明,大辽河营养盐受其沿岸主要排污口的影响较为显著,主要排污口污水排放对大辽河水质的影响不容忽视.  相似文献   

4.
东江干流水体氮的时空变化特征及来源分析   总被引:1,自引:0,他引:1  
为了防治东江氮污染并进行针对性水体治理,于2013年7月(丰水期)和2014年1月(枯水期)全面调查了东江干流水体氮的时空变化特征,并利用附生藻的稳定性氮同位素示踪技术对东江水体氮进行了溯源研究.结果表明,TN、NO-3-N、NH+4-N在丰水期的平均浓度分别为2.70、1.63、0.21 mg·L-1,高于枯水期(TN,2.04 mg·L-1;NO-3-N,1.49 mg·L-1;NH+4-N,0.31 mg·L-1);东江水体氮含量较高,且主要以NO-3-N形态存在.各形态氮浓度自上游至下游的变化趋势表现为,TN和NO-3-N先递减再升高,NH+4-N则逐渐递增.稳定性氮同位素示踪表明,面源输入的人畜粪便、养殖废水及农业化肥等是上游区域氮的主要来源,贡献率约占91%;而在下游区域,城市污水的贡献率逐渐增大,并成为氮的主要来源,贡献率达到54%.  相似文献   

5.
研究了长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征结果表明:①14个沉积物的总氮(TN)含量为768.5~5190 6 mg·kg-1之间,以月湖沉积物TN含量最高,是其它各湖泊沉积物TN含量的2~7倍;可交换态氮(EN)含量为150.92~341.98mg·kg-1,占TN的6.29%~19.64%;固定态铵(F-NH4)含量变化在186 5~462.5mg·kg-1,占TN的8.40%~35.02%.②EN以NH 4-N为主,NO-3-N其次,NO-2-N最低,分别占EN的74.61%~85.85%、13.93%~25.15%和0.17%~0.27%.③EN、NH 4-N、NO-3-N及NO-2-N之间在α=0.01时互为显著正相关,F-NH4与EN、NH 4-N在α=0.05时显著正相关,而与NO-3-N、NO-2-N不相关.④在α=0.01或α=0.05时,EN、NH 4-N、NO-3-N、NO-2-N和F-NH4分别与总氮(TN)、总磷(TP)、有机碳(TOC)、阳离子代换量(CEC)、粉沙粒(Silt)及粘粒(Clay)含量有显著正相关关系,与粗砂粒(Sand)含量有显著负相关关系.除此之外,F-NH4与CaO、Fe2O3和Al2O3均有显著正相关关系.  相似文献   

6.
潘晓雪  马迎群  秦延文  邹华 《环境科学》2015,36(8):2800-2808
为了解"引江济太"调水过程中长江、望虞河对贡湖营养盐输入特征,于2013年8月和2013年12月引水期间对20个采样点各形态N、P质量浓度的沿程和时间变化以及百分含量占比进行研究.结果表明,两个不同的引水期,长江-望虞河-贡湖段水体各形态N、P沿程和时间变化均表现不一:长江引水经望虞河入贡湖后,水体NO-2-N、NO-3-N、NH+4-N和TN质量浓度均较长江和望虞河段有不同程度的降低,而贡湖段DON质量浓度显著高于长江和望虞河段,但长江-望虞河段水体各形态N中NO-3-N质量浓度最高.长江和望虞河TP质量浓度总体表现平稳,而各形态P质量浓度在两个引水时期内有所变化.从时间变化来看,2013年8月水体的DON和TP质量浓度总体上高于12月;而NO-3-N和DOP质量浓度总体上低于12月.总体来说,两个引水时期内,NO-3-N和TPP是望虞河经长江引水的主要N、P形态;而贡湖经望虞河水体输入的N、P主要形态分别为NO-3-N、PO3-4-P和TPP.  相似文献   

7.
原位采集太湖流域平原河网地区典型农户化粪池排口处的表层土壤及化粪池出水,人工模拟研究区域的典型降水(夏季30 mm·次-1、冬季5 mm·次-1)、气温(夏季27℃、冬季5℃)条件以及排污负荷进行室内模拟土柱实验,测算不同季节、不同天气过程(雨前7 d、雨天3 d、雨后7 d)化粪池排口处土壤对农村生活污水氮素污染物的消减率/增加率,并探讨其消减增加规律.结果表明,排污口土壤TN、NH+4-N消减率、NO-3-N增加率均存在显著的季节性差异(P<0.05);夏季TN消减率、NO-3-N增加率在不同天气过程(雨前、雨天、雨后)存在显著差异(P<0.01),而夏季NH+4-N消减率和冬季TN、NH+4-N消减率、NO-3-N增加率则无显著差异(P>0.05);因此,TN、NH+4-N消减率和NO-3-N增加率均需按季节进行划分,夏季TN消减率、NO-3-N增加率还需按天气过程进行划分,夏季雨前、雨天、雨后分别为38.5%、-25.0%、46.0%和478.1%、913.8%、382.0%,而夏季NH+4-N消减率和冬季TN、NH+4-N消减率、NO-3-N增加率则无需按天气过程进行划分,分别为91.5%、50.4%、85.5%和276.0%;夏季雨前、雨天及雨后TN消减率与NH+4-N消减率不相关,但与NO-3-N增加率呈显著负相关,冬季土壤中TN的稳定蓄积是冬季雨前、雨天及雨后TN消减率无显著性差异并保持较高水平的重要原因,且其与NH+4-N在土壤中的稳定蓄积密切相关.  相似文献   

8.
循环流廊道湿地中氮归趋过程模拟研究   总被引:1,自引:1,他引:0  
针对新型高效脱氮循环流廊道(CFC)湿地,构建了涵盖6种氮形态、3类介质、10种代谢途径的N循环模型,探索了湿地内N迁移转化模式.结果表明,沸石吸附(53.3%)、植物吸收NH+4-N(27.6%)、NO-3-N反硝化(10.2%)、植物吸收NO-3-N(2.9%)和NO-2-N短程反硝化(1.5%)对TN去除贡献依次降低.NH+4-N去除机制存在季节差异,其中1月NH+4-N主要通过沸石吸附去除(84.5%);4~6月通过植物吸收去除(76.4%~85.3%);7月通过沸石吸附(36.1%)、亚硝化(45.8%)及植物吸收(21.4%)共同去除.此外,定期收获植物、按期再生沸石及种植水生植物可分别提升TN去除率1.7%~7.7%、43.1%~72.2%和19.8%~36.2%.综之,CFC湿地去除途径多样性保障了TN的长期高效去除.  相似文献   

9.
太湖湖滨带春季悬浮物沉降特征与水体营养盐响应   总被引:3,自引:2,他引:1  
为研究湖滨带悬浮物沉降过程中水体营养盐时空分布状况,在太湖西岸湖滨带典型区域进行原位沉降实验,计算了沉降量和沉降通量,并对沉降过程中TP、TN、NH+4-N、NO-3-N测定分析.结果表明,太湖西岸湖滨带沉降通量表现为人工芦苇区近岸无植被区自然芦苇区远岸无植被区,平均沉降通量分别为(1 383.40±925.60)、(1 208.67±743.50)、(278.72±142.53)、(245.58±154.25)g·(m2·d)-1,沉降第6 d以后沉降量稳定上升,沉降速率大于分解速率;经过持续15 d野外沉降实验观测,沉降过程中近岸带的TP含量是远岸带的2~3倍,且沉积物捕获器内NH+4-N和NO-3-N含量出现显著的差异(P0.01);沉降量与水体TN和NH+4-N含量呈显著相关(P0.01,n=42),表明沉降量的增加会导致上覆水体TN与NH+4-N含量增加;TN与NH+4-N相关系数为0.84,显示沉降量的增加可能加速氮素不同形态间相互转化,这一现象在当前太湖湖泛治理中应当予以重视.  相似文献   

10.
在太湖流域采用田间小区试验研究了干湿交替节水灌溉与控释肥(控释BB肥与树脂包膜尿素)施用对稻田30 cm深土壤渗漏水总氮(TN)、铵态氮(NH+4-N)、硝态氮(NO-3-N)和亚硝态氮(NO-2-N)浓度的动态变化及氮素淋失的影响.结果表明:各处理渗漏水TN、NH+4-N和NO-2-N浓度均在施肥后10 d内达到高峰,然后逐渐下降.渗漏水氮素以NH+4-N(0.22~15.15 mg·L-1)为主,平均占TN 70.1%,NO-3-N(0.10~0.95 mg·L-1)占TN比例较低,平均为13.0%,NO-2-N(0~0.24 mg·L-1)平均仅占TN 1.3%.与淹灌相比,节灌对稻田渗漏水氮素浓度及各氮素占总氮的比例影响不大,但降低了14.2%的渗漏水量和9.4%的TN淋失量.施氮显著提高了渗漏水氮素浓度以及NH+4-N和NO-2-N占TN的比例.控释BB肥和树脂包膜尿素较常规尿素处理水稻全生育期渗漏水TN平均浓度分别降低10.2%和43.3%,TN淋失量分别降低26.1%和39.5%.综上,干湿交替节灌结合树脂包膜尿素施用有利于降低氮素渗漏损失,促进农田面源污染减排.  相似文献   

11.
典型滨海湿地干湿交替过程氮素动态的模拟研究   总被引:7,自引:4,他引:3  
韩建刚  曹雪 《环境科学》2013,34(6):2383-2389
滨海湿地是海陆相互作用的交错过渡地带,具有敏感而复杂的环境过程与功能价值.以典型滨海湿地崇明东滩为原型,采集湿地沉积物及海水样品,通过土柱模拟方法,研究了半月潮(15 d左右为周期的"大潮")与日潮(一个太阴日内出现的涨潮和落潮)水分生态过程沉积物NO3--N、NO2--N、NH4+-N与溶解性有机氮(DON)含量以及硝酸还原酶(Nar),亚硝酸还原酶(Nir),羟胺还原酶(Hyr)活性等的变化,旨为揭示滨海湿地潮汐驱动下沉积物周期性干湿交替过程氮素动态变化规律及还原机制.半月潮过程中,沉积物变干期间(含水量从35%降至5%~7%),硝化作用占主导地位.随着干燥程度的加剧(含水量从5%~7%降至0%~3%),沉积物中数量可观的NO3--N和NO2--N转化为DON.然而,随着干湿交替频次的增加,NO3--N和NO2--N向DON的转化率显著降低.干燥沉积物淹水变湿后(含水量从0%~3%升至37%~45%),NO3--N、NO2--N、NH4+-N与DON含量平均增加1~3倍.淹水后Nar、Nir活性的迅速升高表明,NO3--N和NO2--N的还原明显改善.3个培养周期沉积物Nar与Nir活性、Hyr活性与NH4+-N含量之间呈现极显著的正相关性,NO3--N、NO2--N含量的减少与NH4+-N含量的增加也显著相关.结合湿地沉积物干湿交替过程"低氮高碳"特征,可以认为,氨化途径主导了半月潮过程NO3--N的还原.相比较而言,日潮过程中,NO3--N、NO2--N、NH4+-N以及DON的含量均较为稳定,分别为(3.0±0.3)、(1.2±0.1)、(133.3±4.3)和(41.1±10.6)mg·kg-1.因此,日潮过程对沉积物氮素动态变化的影响较小.  相似文献   

12.
宁南山区不同草地土壤原位矿化过程中氮素的变化特征   总被引:2,自引:0,他引:2  
蒋跃利  赵彤  闫浩  黄懿梅 《环境科学》2014,35(6):2365-2373
用顶盖埋管法对宁南山区天然草地、人工草地和自然恢复草地中有机氮、微生物生物量氮、可溶性有机氮、铵态氮、硝态氮、亚硝态氮含量和土壤氮素矿化速率在原位培养中的动态变化特征进行了研究.结果表明,微生物生物量氮、可溶性有机氮、铵态氮、硝态氮、亚硝态氮含量,总体上在培养60 d时(4~6月)基本保持不变,60~120 d(6~8月)明显降低,120 d(8月)后有所回升,各种氮素含量均在培养120 d(8月)时最低.有机氮含量在整个培养过程中基本保持不变.土壤氮净矿化速率、净硝化速率、净氨化速率均在60~120 d(6~8月)时最低.各种氮素占总氮的比例随培养时间的延长而变化:有机氮、亚硝态氮占总氮的比例相对稳定,微生物量氮、可溶性有机氮、硝态氮、铵态氮占总氮的比例在培养0~120 d(4~8月)时降低,培养120 d(8月)后升高.土壤有机碳、pH、容重与氮素含量极显著相关,各种氮素间极显著正相关.不同草地间,各种氮素含量均表现为天然草地>自然恢复草地>人工草地.  相似文献   

13.
为了提高景观水体中DON测定的精确性,研究了纳滤(NF90、NF270)预处理前后水样中DON测定的变化,探讨了NF90、NF270对DIN的去除效果.结果表明,NF90和NF270预处理对NH4+-N、NO3--N和NO2--N的平均去除率分别为30.7%、55.9%、50.0%、73.1%、42.9%、72.0%,NF270对DIN的去除效果更好.常规方法测定DON的质量浓度范围为0.09~0.46 mg·L-1,采样点2处出现负值(-0.08 mg·L-1),DIN/TDN比率范围为85.3%~105%;NF90预处理测定DON的质量浓度范围为0.03~0.58 mg·L-1,DIN/TDN比率范围为76.1%~90.6%;NF270预处理测定DON的质量浓度范围为0.10~0.59 mg·L-1,DIN/TDN比率范围为47.5%~84.5%.这说明NF预处理能够有效去除水样中DIN,减少DON测定的标准偏差,增加了测定的精度.奥林匹克森林公园水体中DON分布的研究表明,水体DON呈现显著的季节性差异,并且南北园区也存在明显差异.北园11月、3月、5月DON较低,小于0.2 mg·L-1,7月质量浓度较高,南园5月DON较低,11月和3月较高,在0.40~0.65 mg·L-1之间.  相似文献   

14.
为探究深水水库沉积物微生物功能特征及利用价值,于2019年在实验室对小湾水库表层沉积物微生物进行了驯化分离,并分析了其中一株细菌的脱氮效率.结果表明,分离出的细菌XW731经鉴定属于假单胞菌属(Pseudomonas sp.),是一种贫营养型好氧反硝化菌;在分别以NH4+-N、NO3--N和NO2--N为唯一氮源时,该菌对NH4+-N、NO3--N和NO2--N去除率分别为33.6%、68.5%和9.1%;以NH4+-N和NO3--N为氮源时,对NH4+-N和NO3--N去除率分别为66.4%、89.6%,同步硝化反硝化能力更强.将该菌投加到两种城市微污染水体后测试表明,该菌对城市河道水体的NH4+-N和NO3--N去除率分别为38.3%和42.4%,对城市降雨水体的NH4+-N和NO3--N去除率分别为22.2%和7.7%.  相似文献   

15.
太湖丘陵地区农田氮素迁移的时空分布特征   总被引:9,自引:1,他引:8  
王鹏  高超  姚琪  韩龙喜  申霞 《环境科学》2006,27(8):1671-1675
在太湖丘陵地区选择4种有代表性的土地利用类型进行野外原位试验,研究自然降雨条件下氮素随地表径流迁移的时空分布特征.试验结果表明,随地表径流迁移的农田氮素以氨氮为主,其“次降雨径流平均浓度”中位值占总氮的44.5%,亚硝态氮浓度最小,仅占1.8%.地表径流中的氮素浓度存在显著的季节性差异,其分布主要受降水量、气温等气象条件以及农事活动的影响.总氮、氨氮、硝态氮和亚硝态氮的“多场降雨径流平均浓度”的时间变异性依次减小.菜地径流中总氮、氨氮和硝态氮以及竹林亚硝态氮的SMC值最高,不同土地利用下氮素浓度的空间分布主要与施肥条件以及植被覆盖度有关.各氮素形态SMC值的空间变异性小于其时间变异性.旱地和菜地的氮素迁移通量大于板栗林和竹林,径流量是导致迁移通量存在显著差异的主导因素.  相似文献   

16.
基质比对ABR厌氧氨氧化工艺脱氮性能的影响   总被引:6,自引:5,他引:1  
为解决厌氧氨氧化底物去除不彻底导致总氮去除偏低的问题,通过控制不同的进水基质比,对厌氧折流板反应器(ABR)的厌氧氨氧化脱氮性能进行了研究.结果表明,ABR厌氧氨氧化系统最佳进水N_2~O--N/NH+4-N为1.34,此时NH+4-N和N_2~O--N的去除率同时达到99.99%左右,总氮去除率达到峰值为87%,当进水N_2~O--N/NH+4-N从1逐渐降低至0.49和从1.34逐渐提高至1.62时,反应器对NH+4-N和N_2~O--N的绝对去除量较为稳定,NH+4-N或N_2~O--N过量对ABR厌氧氨氧化系统没有产生明显抑制;此外,不同基质比条件下,NH+4-N和N_2~O--N的去除基本在第1隔室完成,基质比变化对ABR各隔室的脱氮效果没有产生显著影响,ABR厌氧氨氧化系统对基质浓度的变化具有较好的稳定性.  相似文献   

17.
为有效控制白酒废水中高质量浓度NH4+-N对A/O系统冲击引起的出水水质超标问题,分析比较单级A/O工艺和分段进水两级A/O工艺[进水时间(以min计)分配比为7:3]对白酒废水的处理效果.结果表明:与单级A/O工艺相比,分段进水两级A/O工艺出水中ρ(NH4+-N)、ρ(NO2--N)、ρ(NO3--N)和ρ(CODCr)均显著降低,其平均去除率分别提高了16.9%、43.2%、49.7%和8%.分段进水两级A/O工艺的二次进水能够为短程硝化反硝化的进行提供有效碳源和NH4+-N等,为NO2--N和NO3--N等去除提供了有利条件;同时,它通过促进对系统内碳源的利用以及NO2--N的去除,进一步降低了出水中ρ(CODCr).此外,分段进水两级A/O工艺通过降低NH4+-N和NO2--N等污染物质量浓度,也能有效减弱其对氨氧化菌和亚硝酸盐氧化菌等微生物的抑制作用,为后续好氧阶段含氮污染物的去除奠定基础.但是,分段进水两级A/O工艺对白酒废水中PO43-的去除效果有限,这主要是因为第二阶段的NO2--N存在使反应系统处于缺氧环境,同时在碳源不充足的情况下,导致聚磷微生物释磷不充分,降低了第二好氧段的吸磷动力.研究显示,分段进水两级A/O工艺能够有效强化白酒废水中三态氮和CODCr的降解去除.   相似文献   

18.
单宁酸铁吸附去除水中无机氮的性能与机制研究   总被引:1,自引:0,他引:1  
张瑞娜  李琳  刘俊新 《环境科学》2015,36(11):4141-4147
通过批量吸附实验,研究了一种新型吸附材料——单宁酸铁吸附去除水中无机氮(NH+4-N、NO-2-N和NO-3-N)的效果及其吸附机制.结果表明,单宁酸铁对NH+4-N和NO-2-N具有优先选择性,当单宁酸铁与NH+4-N和NO-2-N的质量比为200时,NH+4-N和NO-2-N去除率均大于95%.运用吸附动力学模型、Weber-Morris方程、Langmuir和Freundlich方程进行实验数据拟合的结果表明,NH+4-N和NO-2-N在单宁酸铁表面分别进行单分子层和多分子层的吸附,其吸附过程符合二级动力学模型,并且颗粒外部扩散和表面吸附起主要的作用.NH+4-N与分布于单宁酸铁外表面的氧负离子通过静电作用结合,NO-2-N则与单宁酸铁中的铁离子通过静电作用和配位作用结合.本研究为单宁酸铁作为吸附剂的发展与应用提供了科学依据.  相似文献   

19.
为了探讨黄土高塬沟壑区水体氮污染的时空变化情况,选取黑河流域(泾河支流)为研究区域,测定2013—2014年枯水期和汛期流域地表水和地下水中主要离子及NO_3~--N和NH+4-N的浓度并进行分析.结果表明,黑河流域枯水期水化学主要为Na+K-Cl-SO_4型,汛期主要为CaMg-HCO_3型.枯水期及汛期阳离子均主要为Na+,阴离子在枯水期主要为SO_4~(2-)而汛期则转变为HCO_3~-.汛期NO_3~--N浓度普遍大于枯水期,平均值分别为2.37和1.63 mg·L~(-1);且空间分布不均衡,地表水中的浓度为:上游(1.35 mg·L~(-1))中游(1.05 mg·L~(-1))下游(0.93 mg·L~(-1)),而地下水中的浓度为:下游(3.84 mg·L~(-1))中游(2.54 mg·L~(-1))上游(2.35 mg·L~(-1)).NH_4~+-N在时间分布上没有明显的规律,汛期及枯水期变化不大,空间分布特征与NO_3~--N类似,但其整体浓度较低,在0.11 mg·L~(-1)左右波动,较为稳定均且未超过IV类水标准.水体中NO_3~--N不仅来自于农田氮肥的施入等人类活动,还可能来自于酸性降雨.地表水的NO_3~--N污染程度存在空间差异,上游污染程度大于中、下游,而超过70%的地下水水质属于良好,对当地饮用水安全暂不造成威胁.  相似文献   

20.
亚热带农田和林地大气氮湿沉降与混合沉降比较   总被引:2,自引:1,他引:1  
本研究在位于我国亚热带区域的湖南省长沙县金井河流域,设置一个农田监测点和一个林地监测点,开展了完整的2a(2011年3月至2013年2月)大气氮素(N)湿沉降和混合沉降(湿沉降+部分干沉降)的监测,评价两种方法监测的大气氮素沉降的差别,并建立一种采用氮素混合沉降来估算氮素湿沉降的方法.结果表明采样点氮素湿沉降和混合沉降以NH_4~+-N沉降量最高,其中农田点大气氮湿沉降、混合沉降量分别为26.2 kg·(hm~2·a)~(-1)、28.9 kg·(hm~2·a)~(-1),湿沉降、混合沉降NH_4~+-N、NO_3~--N和可溶性有机氮(DON)分别占湿沉降、混合沉降总氮(TN)的49.7%、31.3%、19.0%和48.7%、31.6%、19.7%.林地点大气氮湿沉降、混合沉降量分别为23.6 kg·(hm~2·a)~(-1)、27.8 kg·(hm~2·a)~(-1),湿沉降、混合沉降NH_4~+-N、NO_3~--N和DON分别占湿沉降、混合沉降TN的53.9%、34.8%、11.4%和49.6%、31.6%、18.9%.研究区域降雨量与湿沉降、混合沉降雨水中NH_4~+-N、NO_3~--N和TN浓度均有极显著负相关关系,而与沉降量有显著正相关性.两监测点湿沉降与混合沉降的雨水中N素浓度具有极显著线性相关性(决定系数大于0.82),根据二者之间建立的回归方程,农田点采用混合沉降估算湿沉降中NH_4~+-N、NO_3~--N和TN沉降的系数值分别为0.875、0.774和0.852;林地点相应的系数值分别为0.859、0.783和0.819,该系数值主要与监测点的氮素湿沉降量及大气颗粒态氮的污染水平有关.亚热带区域采用大气氮素混合沉降替代氮素湿沉降,将导致氮素湿沉降被高估10%~18%,利用氮素混合沉降和氮素湿沉降之间的回归方程,可以较好实现采用混合沉降来估算湿沉降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号