首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
非均相钴活化过氧乙酸(PAA)是一种有前景的杂环类药物去除技术,然而目前报道的钴基催化剂通常为粉末状,难以回收,因此,构建可循环利用的非均相钴基催化剂及其活化PAA体系具有重要意义.通过浸渍煅烧法制备负载型钴基催化剂(载钴陶粒),系统研究了不同影响因素下载钴陶粒活化PAA体系降解水中典型杂环类药物(磺胺甲恶唑(SMX)、磺胺嘧啶(SDZ)、卡马西平(CBZ)和甲氧苄啶(TMP))的性能.结果表明,其最优反应条件为:载钴陶粒投加体积比(载钴陶粒/反应溶液)为1∶20 (V/V),PAA浓度为150 mg·L-1.当杂环类药物初始浓度为20mg·L-1时,反应30 min后SMX、SDZ、CBZ、TMP的降解率分别为96.42%、99.63%、96.74%和89.93%.溶液中的共存离子对杂环类药物的降解存在抑制作用,其影响为:HCO3->NO3-≈SO42-≈Cl-.反应结束后钴溶出浓度均低于1 mg·L-1,符合我国地表水环境质量标准规定,但溶液发光细菌急性毒性均升高.经5次循环使用后,载钴陶粒/PAA体系对除TM...  相似文献   

2.
以污水厂实际二级出水为处理目标,通过中试试验研究了陶粒滤料反硝化生物滤池、固定床反硝化砂滤池和连续过滤连续反冲砂滤池的特性。以甲醇作为外加碳源,3种滤池均可实现出水平均总氮小于5 mg/L。不足量投加外碳源会出现出水亚硝态氮的积累。当进水TN为15 mg/L左右时,为达到出水TN小于5 mg/L,生物滤池、固定床砂滤池和连续过滤砂滤池建议滤速分别为不大于8,5.2,6.2 m/h;滤池反硝化碳源投加比例分别为4.28,3.0,3.2 g甲醇/gTN;对应的反硝化容积负荷平均值分别为1.1,0.8,1.2 kg/(m3·d)。进水组分分析发现,有机氮不是出水总氮小于5 mg/L的限制因素。  相似文献   

3.
曝气陶粒生物滤池深度处理印染废水的研究   总被引:1,自引:0,他引:1  
通过对陶粒生物滤池深度处理江苏某印染厂二级生化出水的研究表明:陶粒生物滤池在整个稳定运行阶段对本印染废水的CODcr去除率达55%左右,当进水CODcr在90 mg/L~100 mg/L之间时,出水CODcr可保持低于50 mg/L;陶粒生物滤池对于NH3-N也有很好的去除效果,当进水NH3-N浓度在8.5 mg/L~14 mg/L之间波动时,出水能够保持在1~1.5 mg/L,平均去除率基本稳定在88.5%左右;当进水色度在50~80度之间波动时,出水色度在38~62度之间,色度去率为20%。同时分析了CODcr、NH3-N去除的机理,以及导致色度去除不高的原因。  相似文献   

4.
为解决AnMBR(厌氧膜生物反应器)出水NH4+脱除的问题,提出利用AnMBR出水中残余CODCr、溶解性CH4以及低价态硫元素,通过构建缺氧滤池和好氧滤池进行生物异养和硫自养脱氮的方法,进一步削减AnMBR出水CODCr、去除溶解性CH4、同时同步生物脱氮.结果表明:①缺氧滤池与好氧滤池经过120 d单独驯化与33 d串联驯化后,在HRT(hydraulic retention time,水力停留时间)为6 h、进水为实际AnMBR出水的工况条件下,出水ρ(TN)为17.93 mg/L,去除率为52.7%;出水ρ(NH4+-N)为2.78 mg/L,去除率为92.3%,达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准.在HRT为8 h工况条件下,出水ρ(TN)为14.60 mg/L,去除率为59.0%;出水ρ(NH4+-N)为2.22 mg/L,去除率为93.7%,达到GB 18918-2002一级A标准.②脱氮滤池中氮脱除路径主要包括残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化,并通过物料衡算评价了三者对于氮脱除的贡献,在HRT为6 h的工况条件下,脱氮滤池脱氮过程中残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化三者占比分别为54.1%、24.3%和21.5%;在HRT为8 h的工况条件下,脱氮滤池脱氮过程中3种途径占比分别为70.4%、13.8%和15.8%.研究显示,脱氮滤池可以实现对AnMBR出水的低耗生物脱氮以及整体水质的达标排放.   相似文献   

5.
循环流生物膜反应器同时硝化反硝化实验研究   总被引:3,自引:0,他引:3  
研究了循环流软性填料生物膜反应器的同时硝化反硝化。实验结果表明,反应器中确实存在着同时硝化反硝化现象。考察了碳氮比(C/N)和溶解氧(DO)对同时硝化反硝化的影响。在进水COD和NH4+—N浓度为500mg/L、15mg/L时,出水COD、NH4+—N和TN浓度<50mg/L、3.0mg/L、4.5mg/L,COD去除率、硝化率和反硝化率分别达到90%、80%和70%。  相似文献   

6.
为提高煤矿生活污水脱氮效果并优化反应方式,采用限氧曝气生物膜反应器进行试验研究,分析了污染物去除效果和主要影响因素。结果表明:在第一反应室DO为1.5~2 mg/L、第二反应室DO为1~1.5 mg/L、HRT为3.13 h、ρ(COD)=69.8~85.2 mg/L、ρ(NH4+-N)=14. 6~17.9 mg/L、ρ(TN)=17.3~21.2 mg/L的进水条件下,反应器出水COD、NH4+-N、TN最大质量浓度分别为18.3 mg/L、0.23 mg/L和8.92 mg/L,平均去除率分别为80.8%、99.3%和59.3%,同步硝化反硝化效率(SND率)为45.4%~56.5%;在2.78 h≤HRT≤4.17 h范围内,反应器出水COD和NH4+-N浓度达到GB 3838—2002Ⅲ类标准要求,出水ρ(TN)10 mg/L且SND率达到52%。  相似文献   

7.
利用连续流双污泥生物澄清反应器(BCR)反硝化除磷系统,以模拟城市生活污水为处理对象,研究双污泥系统对COD、NH4+-N、TN的去除效果及不同NO3--N浓度对反硝化除磷的影响。试验结果表明:双污泥BCR反硝化除磷系统对COD、NH4+-N和TN具有良好的去除效果,平均去除率分别为83.22%、97.2%、75.47%。控制生物膜好氧硝化反应池中DO浓度为3、4、5 mg/L,池内NO3--N浓度分别达到22、30、38 mg/L,TP的平均出水浓度分别为2.11、0.96、2.69 mg/L。当硝化池中NO3--N浓度为30 mg/L时,系统的运行情况较好,出水TP的浓度相对较理想。  相似文献   

8.
在处理低C/N比城市生活污水时,通过控制溶解氧实现A/O工艺短程硝化反硝化脱氮。结果表明:当DO为(2.0±0.5)mg/L时,亚硝化积累可达67.45%,出水TN浓度为18.97 mg/L。结合污泥厌氧水解工艺,将污泥在33℃,不调节pH,厌氧水解18 h后的产物上清液与原污水以1∶10混合作为进水,出水TN浓度为14.68 mg/L,达《城镇污水处理厂污染物排放标准》一级标准。  相似文献   

9.
依托实验室稳定运行的反硝化生物滤池反应器,研究其反冲洗前后生物膜活性和胞外聚合物的变化特征。反硝化生物滤池进水NO3--N平均浓度为32.35 mg/L,出水NO3--N浓度低于0.95 mg/L,对NO3--N去除率达99.2%;COD进、出水平均浓度分别为290.84和154.43 mg/L。反硝化生物滤池的反冲洗周期为14 d,生物膜活性由反冲洗前的11.92 mg TF/g SS提高到反冲洗后的40.06 mg TF/g SS;生物膜胞外聚合物由反冲洗前的50.28 mg/g SS降低到反冲洗后的38.20 mg/g SS,且蛋白质与多糖含量之比也由3.28降低为3.16。反冲洗后生物膜的活性明显提高,胞外聚合物含量减小。  相似文献   

10.
序批式膜反应器同步硝化和反硝化的特性   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高污水生物脱氮处理的效率和减少外加碳源,研究了序批式膜反应器(SBBR)在有氧情况下处理生活污水中同步硝化和反硝化的特性.试验表明,原水TN为80~110mg/L和溶解氧浓度为0.8~4.0mg/L情况下,出水TN小于15mg/L,NH3-N去除率达100%,TN去除率54%~77%,NH3-N容积负荷率为47~94mg/(L·d),TN容积负荷率为56~113mg/(L·d).TN的变化规律为在NH3-N降到零或最小之前,TN持续降低之后,TN有短时的上升后再缓慢降低.在较大的溶解氧浓度范围内,SBBR具有同步硝化和反硝化的能力,建议将NH3-N降解到零或最小值的时刻,作为同步硝化和反硝化的结束点.  相似文献   

11.
过氧乙酸[PAA,CH3C(O)OOH]作为一种新兴的氧化剂,在处理污水中难降解有机污染物中受到了越来越多的关注.通过蚀刻方法制备出纳米核壳Co@NC催化剂,并将其用于活化PAA降解污水中磺胺甲■唑(SMX).结果表明,当控制催化剂投加量为0.02 g·L-1、PAA浓度为0.12mmol·L-1和SMX浓度为10μmol·L-1时,反应5 min时SMX的去除率即可达到98%,且降解SMX的速率常数为0.80 min-1.SMX降解效率随催化剂添加量和PAA浓度提高而显著增加.结果发现核壳Co@NC/PAA体系在近中性条件下(pH为6.0~8.0)可获得最佳的SMX降解效果,酸性或碱性条件均不利于SMX去除.HCO-3和腐殖酸对该催化体系存在显著抑制,而Cl-抑制作用较弱.此外,通过自由基淬灭实验和电子顺磁共振(EPR)研究发现,乙酰氧自由基(CH3CO2·)和乙酰过...  相似文献   

12.
DO C/N对同步硝化反硝化影响的试验研究   总被引:3,自引:1,他引:3  
在序批式活性污泥反应器(SBR)内,以模拟的城市污水为处理对象,研究DO、C/N等因素对同步硝化反硝化脱氮效率的影响。研究表明:采用连续曝气工艺,在进水COD=200mg/L,NH4+-N=30mg/L条件下,控制DO在0.5~1.5mg/L范围内时,出水TN浓度为1.98~6.3mg/L,TN的平均去除率在80%以上,最高去除率达到93.74%,并可推断出在反应系统内存在好氧反硝化菌;C/N在3.3~10之间时,C/N越高,出水NO3--N浓度越低,SND效果越好。  相似文献   

13.
李纪华  王正芳  郑正 《环境工程》2012,(Z2):41-43,129
曝气生物滤池(BAF)是在普通生物滤池的基础上,借鉴给水滤池工艺开发的污水处理新工艺。以炉渣为填料采用前置反硝化曝气生物滤池处理模拟生活污水,研究了前置反硝化曝气生物滤池处理生活污水的启动状况,考察了启动过程中COD、NH4+-N等主要污染物的去除情况。试验结果表明,在水力负荷为1.74m/h、回流比150%、气水比为3∶1的条件下,COD和NH4+-N分别在35d和45d内得到了有效地去除。其中,COD出水浓度降到30mg/L以下,去除率稳定在85%以上;NH4+-N出水浓度降到10mg/L以下,去除率稳定在65%以上。研究结果表明选用炉渣作填料的前置反硝化曝气生物滤池在相对较短的时间内启动效果良好。  相似文献   

14.
某污水深度污水处理厂的瞬时进水量波动较大,反硝化生物滤池存在碳源投加不经济和出水TN不稳定的问题。根据历史甲醇投加量及水质数据得知,实际反硝化C/N约为7,制定了《甲醇加药量指导表》。操作人员可根据进水流量、进水TN数据,在该表中查询所需设定的甲醇投加流量。操作人员每小时调整1次甲醇投加量,从而实现了甲醇投加量的人工精细化调控。进水TN以“NO-3-N+常数n”表示,其中NO-3-N由曝气滤池总出水的硝态氮仪表读取,“常数n”则根据出水在线监测数据校核或调整,一般相对稳定且为2左右。尽管反硝化所需的碳氮比是变化的,且随着TN去除量的降低而升高,但仍可通过调整“常数n”的取值,实现甲醇投加量的精细化调控。通过精细化调控,使得出水TN平均值由5 mg/L稳定提高至8 mg/L,节约了约3 mg/L TN所消耗的碳源。预计精细化调控可实现年均出水ρ(TN)提高2 mg/L,年节约25%(150万元)的甲醇药剂费,基本可达到与自动化精确加药相当的效果。该方法操作简单,具有一定的工程应用价值。  相似文献   

15.
研究不同温度条件下,间歇曝气/曝气生物滤池脱氮除磷效果,为该种形式的生物滤池高效运行提供依据。试验采用序批式曝气生物滤池SBBR和传统曝气生物滤池BAF串联运行的方式,SBBR/BAF在温度为9~12℃、13~18℃和19~22℃条件下运行。实验结果表明:温度在13~22℃的范围内,TP、COD、NH4+-N去除效果稳定,平均去除率为90.15%,89.49%,85.92%,平均出水浓度分别为0.8mg/L、34.67mg/L、4.46mg/L,温度变化时,TN去除效果不稳定,TN最大去除率为85.29%,平均出水浓度为5.13mg/L。温度变化对SBBR/BAF脱氮影响显著,对除磷和COD的去除影响不明显,系统运行稳定,出水均达到《城镇污水处理厂污染物排放标准》一级标准。  相似文献   

16.
一体化厌氧氨氧化工艺处理垃圾渗滤液的性能研究   总被引:2,自引:0,他引:2  
以垃圾渗滤液为研究对象,研究UASB-除碳-一体化ANAMMOX工艺的除碳脱氮特性.结果表明:该工艺可实现高效除碳脱氮;在进水COD浓度6210~16365mg/L?TN浓度为990~2100mg/L时工艺出水COD浓度最低为655mg/L,出水TN浓度最低为39.9mg/L.进水中的可降解COD主要在UASB和除碳池中去除(分别为59%和31%),进入到一体化ANAMMOX池中的多为惰性有机物质;TN的去除在除碳池和一体化ANAMMOX池中进行,其中除碳池中TN去除量占工艺TN去除量的53%,主要通过同步硝化反硝化去除;ANAMMOX池中TN去除46%,主要通过AOB和AnAOB的协同作用实现.当除碳池出水含可降解有机物时,对后续一体化ANAMMOX池的自养脱氮抑制严重;充分降解除碳池中的可降解有机物是影响系统脱氮效率的关键因素.  相似文献   

17.
短程硝化-反硝化生物滤池脱氮机制研究   总被引:7,自引:4,他引:3  
孙迎雪  徐栋  田媛  李燕飞 《环境科学》2012,33(10):3501-3506
研究了短程硝化生物滤池的调控因素以及短程硝化-反硝化生物滤池的脱氮机制.结果表明,针对城市污水处理厂二级出水中的氨氮和总氮,在水温为(30±1)℃的条件下,提高进水pH值有助于硝化生物滤池中亚硝酸盐的积累,较好地实现短程硝化过程,当进水pH值平均为8.5时,亚硝酸盐的积累达到最大.沿硝化生物滤池水流方向,pH和DO的变化呈相反趋势,亚硝酸盐的积累呈增加趋势,在反应器出水口较好地实现了亚硝酸盐的积累.短程硝化-反硝化生物滤池对NH4+-N有较好的去除效率(90%以上);当反硝化生物滤池进水COD/TN为3.0时,出水TN的浓度降低到8~9 mg.L-1的范围,去除率稳定在79%~81%.  相似文献   

18.
硝化液回流比对A2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以低C/N城市生活污水为处理对象,重点考察了硝化液回流比对A2/O - BCO(生物接触氧化)工艺脱氮除磷特性的影响.在A2/O反应池水力停留时间(HRT)为8h,污泥回流比为100% 条件下,将硝化液回流比分别设定为100%、200%、300%和400%进行试验.结果表明, 系统在A2/O中实现了反硝化除磷,具有很好的同步氮磷的去除效果,出水COD浓度均在50mg/L以下.上述不同硝化液回流比下总氮(TN)去除率分别为48.8%、66.5%、75.6%和62.5%,总磷(TP)去除率分别为86.0%、90.3%、91.0%和95.0%.在硝化液回流比为300%时,系统平均出水TN和TP浓度分别为14.96mg/L和0.49mg/L.系统反硝化除磷量随着硝化液回流比的增大略有增加,在硝化液回流比为400%时,反硝化除磷量高达磷总去除量的98%.  相似文献   

19.
支尧  张光生  钱凯  李激  王硕 《中国环境科学》2018,38(6):2097-2104
为了实现深度脱氮除磷效果,利用生物吸附/MBR/硫铁自养反硝化组合工艺进行优化研究,考察了不同HRT和硫铁体积比对系统脱氮除磷的影响.结果表明,MBR池和硫铁自养反硝化滤池的HRT分别在9h和3h条件下,污染物去除效果最佳,63%的COD在生物吸附段被去除,工艺系统平均出水COD、NH4+-N、NO3--N、TN浓度分别为18.9,0.36,0,3.3mg/L,实现了污染物的超低排放.硫铁反硝化滤池的硫铁体积比为3:1条件下,出水TP平均浓度为0.29mg/L;其中大部分NO3--N在滤池高度10~30cm处被去除,脱氮速率约为46.1gNO3--N/(m3·h).同时组合工艺在运行期间,采用间歇抽吸方式和较高曝气量能有效减缓膜污染进程.  相似文献   

20.
倒置A2/O-MBR处理城市污水的中试研究   总被引:1,自引:1,他引:0  
针对城市生活污水,研究了两点进水倒置A2/O-MBR系统对COD、NH4+-N、TN、TP、出水SS、跨膜压差(TMP)的影响.结果表明,该系统对COD、NH4+-N具有较高的去除率,出水符合GB 18918-2002中一级A标准;当混合液回流比为200%时,系统出水TN浓度小于15 mg.L-1;正常排泥后,系统对TP的去除率达90%左右;在膜丝未大量断裂前,系统出水SS小于10mg.L-1;随着系统的运行,TMP逐渐增大,不正确的曝气方式会导致TMP迅速增加.膜截留对COD、TP、SS有直接去除作用,由于膜滤出水中没有固体损失,可以精确控制污泥龄,有利于世代周期较长的硝化菌和反硝化菌在反应器中生长;当污泥浓度增加到6 500 mg.L-1左右,进水量增加0.5倍对出水水质影响很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号