首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过检测2013年冬季采暖期与2014年夏季非采暖期乌鲁木齐市不同等级交通沿线大气中总挥发性有机物(TVOC)的污染程度,探讨乌鲁木齐市交通沿线大气中TVOC污染的基本特征及影响因素,为乌鲁木齐市可持续发展,居民健康风险评价提供依据。采用PhoC heck+5000Ex挥发性有机气体检测仪。结果表明:采暖期大气中TVOC的质量浓度为0.048~1.161 mg/m3;非采暖期大气中TVOC的质量浓度为0.0883~0.4601 mg/m3,乌市大气中TVOC的污染较轻。采暖期大气中TVOC的浓度高于非采暖期。  相似文献   

2.
采用热扩散管与气溶胶质谱联用系统对2014年夏季河北望都乡村点位亚微米级气溶胶进行在线测量,获取了两段污染过程的气溶胶化学组成及挥发性特征:相对低污染期气溶胶平均质量浓度为(23.3±15.1)·g/m3,有机物占主导,主要受偏北方向气团影响;重污染期平均浓度为(86.6±19.7)·g/m3,硫酸盐占主导,受偏南方向气团影响;主要化学组分挥发性顺序均为硝酸盐 > 氯盐 > 铵盐 > 有机物 > 硫酸盐;与相对低污染期相比,重污染期的硫酸盐对质量浓度贡献更高且挥发性降低,而硝酸盐表现出更高的挥发性;对有机气溶胶而言,重污染期有机物氧化态更高且挥发性更低,老化特征明显.气溶胶半挥发性特征反映了华北夏季高污染条件下区域传输的重要作用.  相似文献   

3.
挥发性有机污染物排放控制标准体系的建立与完善   总被引:1,自引:1,他引:0  
江梅  张国宁  邹兰  魏玉霞  张明慧 《环境科学》2013,34(12):4751-4755
以大气灰霾为代表的区域复合污染问题,导致挥发性有机物(VOCs)成为重点控制的污染物之一.通过对国家和地方挥发性有机污染物排放标准现状分析,依据排放特征以及我国挥发性有机物排放清单,建立和完善挥发性有机物排放控制标准体系.  相似文献   

4.
室内建筑装修材料中存在的挥发性有机物的污染给人们的身体健康带来了极大的负担,针对挥发性有机物污染防控技术的研究已经刻不容缓。为了降低由建筑装修材料给室内造成的挥发性有机物污染,对某未装修、已装修建筑进行了挥发性有机物污染监测。首先对建筑装修材料的挥发性有机物散发机理进行了分析,然后提出一些解决挥发性有机物污染问题的对策,最后对这些解决问题对策的有效性进行实验验证。实验结果表明,提出的这些解决方案能够加快室内挥发性有机物污染的消散速度,减少房间的闲置时间。  相似文献   

5.
针对突发性环境污染事故对我市水体造成的危害,对挥发性及半挥发性有机物、重金属类、农药类等特征污染物对水质毒性的研究,对各类污染物水质生物毒性的进行研究建立毒性评估模型及其指标体系,以便在事故中快速了解污染扩散范围以及确定污染物造成的毒性危害,为水环境应急监测污染事故的及时处置争取宝贵时间和提供科学决策依据。  相似文献   

6.
本文以乌鲁木齐市65中教室为研究对象,对采暖期和非采暖期教学环境空气质量进行了监测和分析,鉴于新疆地区的气候特征、民族组成特征及学校教学环境现状,本文对影响教学环境舒适性的4项指标:二氧化碳(CO_2)、苯系物、总挥发性有机物(TVOC)和可吸入颗粒物(PM10)进行了监测,监测结果显示:在采暖期和非采暖期,TVOC均超过中小学教室卫生标准限制,其他指标均未超限,采暖期4项指标均高于非采暖期,采暖期CO_2、苯系物、TVOC和PM10四项指标监测平均值分别是899ppm、0.055mg/m~3、0.7 mg/m~3和0.1 mg/m~3。24h监测值显示除了苯系物浓度与教学时段和非教学时段没有明显的差异性,其他3项指标在教学时间明显升高。  相似文献   

7.
近年来,我国大气污染防治取得了显著成效,但污染形势依然十分严峻,尤其是臭氧污染问题逐步显现,加强对挥发性有机物的污染防治是当前改善大气环境的主要手段,国家近年来先后密集出台了诸多加强挥发性有机物污染防治的政策和措施。本文针对当前挥发性有机物排放监测监管控制标准、监测仪器、监测方法、监管方式的现状和问题进行了深入分析,并从规范挥发性有机物定义,明确挥发性有机物控制的关键指标,尽快完善挥发性有机物排放监管标准体系,加快挥发性有机物监测技术体系研究,强化挥发性有机物监测监管等方面提出了对策和建议。  相似文献   

8.
采用固相萃取-气相色谱质谱法对湖北省典型水体中半挥发性有机物(SVOCs)进行了长达4 a的监测分析,并对湖北省重要水体长江、汉江、清江及部分水库中SVOCs分布特征和污染来源进行了深入的分析和讨论。  相似文献   

9.
加强港口码头及后方油品储运挥发性有机物污染防治,是我国加强大气污染联防联控管理,进行多污染物协同控制的现实需求,也是我国作为重要的船旗国履行国际公约,承担VOCs排放控制的国际义务的要求。在对港口油品储运项目挥发性有机物污染特征、污染现状分析基础上,结合国际公约、发达国家对港口油品储运挥发性有机物污染防治管理要求及经验,针对我国沿海港口油品建设项目对控制挥发性有机物污染存在的不足,提出了相应的对策建议。  相似文献   

10.
在对我国挥发性有机物污染状况、控制管理和存在问题分析的基础上,结合挥发性有机污染的危害,提出了未来我国挥发性有机物(VOCs)污染减排控制可能的战略与路线。挥发性有机物是导致大气环境恶化的关键,我国挥发性有机污染控制面临严峻的挑战,重点行业VOCs污染的减排控制必然的选择。  相似文献   

11.
大气颗粒物中多环芳烃的污染特征及来源识别   总被引:18,自引:3,他引:15  
研究了北京市2000年采暖期和非采暖期2个典型代表月(6月和12月)不同粒径颗粒物的质量浓度特征以及不同粒径颗粒物中ρ(PAHs)分布特征,并同时利用比值法和化学质量平衡(CMB)受体模型对可吸入颗粒物(PM10)中PAHs的来源进行识别和解析.研究结果表明:北京市采暖期ρ(颗粒物)明显高于非采暖期;采暖期和非采暖期不同粒径颗粒物的比例有差别,采暖期、非采暖期ρ(PM10)分别约占ρ(TSP)的0.662和0.734;PAHs具有更明显富集于细颗粒物中的特征;源解析结果表明燃煤污染和机动车污染是PM10中PAHs的最主要来源.   相似文献   

12.
京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源   总被引:5,自引:0,他引:5  
在2013年4个季节,同步采集了京津冀地区3个典型城市(北京市、天津市和石家庄市)空气PM2.5和PM10样品,采用乙腈超声提取-超高压液相色谱法分析了16种多环芳烃(PAHs).结果表明,京津冀地区城市空气PM2.5和PM10中总PAHs的浓度分别为6.3~251.4ng/m3和7.0~285.5ng/m3,呈现冬季>春季>秋季>夏季的季节变化特点和石家庄>北京>天津的空间分布特点.PAHs环数分布以4、5和6环为主,比例分别为25.0%~45.1%、31.7%~40.1%、15.1%~28.2%,2和3环比例之和小于10.3%;与非采暖季相比,采暖季中4环PAHs比例显著增加,5和6环PAHs比例明显下降.PAHs比值法显示,京津冀地区城市空气颗粒物PAHs的来源呈现明显季节性变化特点,燃煤和机动车排放是2个重要的PAHs排放源,在采暖季燃煤来源的比例较大,在非采暖季以机动车排放的来源为主.  相似文献   

13.
长春市大气SO2、O3和NOx的变化特征及来源   总被引:2,自引:0,他引:2  
为研究长春市采暖期大气污染物的污染水平及其随时间的变化特征,于2012年1—6月通过在线监测仪获取了大气中ρ(SO2)、ρ(O3)和ρ(NOx),利用HYSPLIT(混合型单粒子拉格朗日综合轨迹模式)后向轨迹模型结合地面气象资料,初步分析了该市大气污染物的可能来源及传输过程. 结果表明:观测期间ρ(SO2)和ρ(NOx)的日均值分别为(25.0±21.6)和(54.4±34.0)μg/m3,ρ(O3)最大8 h平均值为(85.0±26.2)μg/m3,ρ(SO2)、ρ(NOx)和ρ(O3)的变化范围分别为2.3~131.0、17.6~183.7和31.0~173.3 μg/m3;其中ρ(O3)日均值超过GB 3095—2012《环境空气质量标准》二级标准限值的时间为2 d,ρ(SO2)和ρ(NOx)均未超过二级标准限值,但ρ(SO2)日均值在采暖期超过GB 3095—2012一级标准限值的时间为23 d,占采暖期的24%. 采暖期ρ(SO2)日变化为双峰型,峰值出现在06:00和20:00左右,而在非采暖期表现为单峰型,峰值出现在08:00左右;ρ(O3)表现为单峰型,峰值出现在13:00─15:00;ρ(NOx)在采暖期表现为双峰型,而在非采暖期表现为单峰型. 对观测期间72 h内HYSPLIT后向轨迹模拟结果和气象数据的分析表明,长春市大气污染主要受本地源的影响,偏西气流易对污染物造成积累,而偏东气流有利于污染物扩散.   相似文献   

14.
北京市民居室内气态PAHs浓度及其影响因素   总被引:2,自引:2,他引:0  
利用自行改进的被动采样装置收集并测定北京城、近郊区38个家庭在供暖期和非供暖期室内空气中7种气态多环芳烃(PAHs)的浓度和组分谱,并探讨影响室内气态PAHs浓度和组分谱的主要影响因素.分析数据表明,北京城、近郊区民居室内的气态PAHs以2环和3环组分为主,7种气态PAHs组分各自的平均浓度范围为1~40 ng/m3,总平均浓度约为100 ng/m3.供暖期和非供暖期之间7种气态PAHs的总浓度没有表现出显著差异,但苊烯和荧蒽的浓度明显不同.相对于供暖期,非供暖期内2环组分的贡献减少,3、4环组分的比例则增加.根据家庭调查问卷和实测的浓度水平,多因子方差分析的结果显示,北京城、近郊区民居室内气态PAHs的浓度和组分谱的主要影响因素包括吸烟、卫生球使用、居室通风强度、日烹调次数和民居建成时间.  相似文献   

15.
Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regression (MLR) equations were established based on the most significant variables for NO2 in heating season (R2 = 0.74), and non-heating season (R2 = 0.61) in the whole study area; and PM10 in heating season (R2 = 0.72), and non-heating season (R2 = 0.49). Maps of spatial concentration distribution for NO2 and PM10 were obtained based on the MLR equations (resolution is 10 km). Intercepts of MLR equations were 0.050 (NO2, heating season), 0.035 (NO2, non-heating season), 0.068 (PM10, heating season), and 0.092 (PM10, non-heating season) in the whole study area. In the central area of Tianjin region, the intercepts were 0.042 (NO2, heating season), 0.043 (NO2, non-heating season), 0.087 (PM10, heating season), and 0.096 (PM10, non-heating season). These intercept values might imply an area’s background concentrations. Predicted result derived from LUR model in the central area was better than that in the whole study area. R2 values increased 0.09 (heating season) and 0.18 (non-heating season) for NO2, and 0.08 (heating season) and 0.04 (non-heating season) for PM10. In terms of R2, LUR model performed more e ectively in heating season than non-heating season in the study area and gave a better result for NO2 compared with PM10.  相似文献   

16.
Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regression (MLR) equations were established based on the most significant variables for NO2 in heating season (R2 = 0.74), and non-heating season (R2 = 0.61) in the whole study area; and PM10 in heating season (R2 = 0.72), and non-heating season (R2 = 0.49). Maps of spatial concentration distribution for NO2 and PM10 were obtained based on the MLR equations (resolution is 10 km). Intercepts of MLR equations were 0.050 (NO2, heating season), 0.035 (NO2, non-heating season), 0.068 (PM10, heating season), and 0.092 (PM10, non-heating season) in the whole study area. In the central area of Tianjin region, the intercepts were 0.042 (NO2, heating season), 0.043 (NO2, non-heating season), 0.087 (PM10, heating season), and 0.096 (PM10, non-heating season). These intercept values might imply an area’s background concentrations. Predicted result derived from LUR model in the central area was better than that in the whole study area. R2 values increased 0.09 (heating season) and 0.18 (non-heating season) for NO2, and 0.08 (heating season) and 0.04 (non-heating season) for PM10. In terms of R2, LUR model performed more effectively in heating season than non-heating season in the study area and gave a better result for NO2 compared with PM10.  相似文献   

17.
近20年北京市城近郊区环境空气质量变化及其影响因素分析   总被引:35,自引:4,他引:35  
利用北京环境空气质量定点监测资料,研究了北京市城近郊区近20年来环境空气质量的变化趋势及其影响因素.结果表明,从年际变化看,SO2、降尘、B[a]P浓度显著下降,而NOx、CO浓度和O3超标情况显著上升,空气污染处于由煤烟型向机动车尾气型转变的过程中,表现出典型的复合污染特征.年内变化显示,采暖期污染比非采暖期严重,尤其SO2在采暖期浓度是非采暖期的5.7倍.从空间分布上看,TSP、降尘、O3表现为近郊区污染重于城区;SO2、NOx、CO表现为城区污染重于近郊区.空气污染源增加的压力与环境保护措施的相互作用是驱动北京市近20年环境空气质量变化的主要因素.产业结构的变化、重点污染源的整治、能源结构调整、能源的清洁使用、机动车尾气排放标准的提高等对保护环境空气质量起到一定作用.  相似文献   

18.
在滨海新区局部区域汉沽和大港采集了TSP和PM10样品,分析了不同颗粒物中多环芳烃的不同期别污染和分布特征,结果表明,多环芳烃的污染水平存在明显的季节性特征,采暖期多环芳烃和可吸入颗粒物中苯并[a]芘浓度均远远高于非采暖期。多环芳烃在不同期别也有不同的分布特征,非采暖期均是高环类多环芳烃占主导地位,比例超过60%;而在采暖期则是中环类多环芳烃占主导。  相似文献   

19.
北京城市空气中多环芳烃的污染特征   总被引:10,自引:8,他引:2  
对北京市分属不同功能区的十三陵、石景山、车公庄和芍药居等地的环境空气进行了采集和测量.采集的样品包括气相和颗粒相中的PAHs,采样流速为450~500 L/min,采集时间不小于13 h,将采集的样品进行预处理,然后用液相色谱进行分析.结果表明:北京城市空气中PAHs污染比较严重,大于4环的PAHs在颗粒相中占主导地位,小于4环的PAHs主要分布在气相中;采暖期的PAHs污染比非采暖期较为严重,取暖所带来的污染占主要地位;同时研究表明,夜间柴油车所产生的污染不容忽视.   相似文献   

20.
环境空气中多环芳烃的来源包括自然源和人为源,本文根据化学质量平衡(CMB)受体模型对邯郸市大气颗粒物中多环芳烃进行源解析,测定邯郸市非采暖季和采暖季可吸入颗粒物中多环芳烃的浓度,对其污染水平进行比较分析。根据污染源调查结果,确定市区多环芳烃的主要排放源类,并建立相应的源成分谱。应用化学质量平衡受体模型解析邯郸市可吸入颗粒物上多环芳烃主要来源的分担率,并根据分析结果针对性提出了多环芳烃污染防治对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号