首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
估算天津环境中γ-HCH归宿的逸度模型   总被引:7,自引:2,他引:5  
以全天津市为研究区域,利用稳态假设的逸度模型,用Matlab软件计算了γ-HCH(林丹)在环境各相中的浓度和相间迁移通量.γ-HCH在天津气、水、土壤、沉积物、鱼、作物、蔬菜各相中的浓度分别为1.57×10-11、7.95×10-7、1.17 × 10-4、4.58×10-4、6.03×10-4、1.60×10-4和6.42×10-5mol/m3,在数量级上与实测值吻合很好.估算结果表明农业施用和农药厂废水是该地区环境中γ-HCH最主要的来源,最大的汇是土壤和沉积相(占环境中总量的99%),最主要的迁移过程是水-沉、气-土的扩散和沉降,土壤和沉积物中的降解是γ-HCH消失的最主要途径.  相似文献   

2.
南京地区DDTs跨界面迁移与归趋的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以DDTs(p, p¢ -DDT, o, p¢ -DDT, p, p¢ -DDD)为研究对象,建立了南京地区DDTs的四级逸度模型,模拟计算了DDTs研究区域环境大气、水体、土壤、沉积物和植物相中的浓度及相间迁移通量.结果表明,以p, p¢ -DDT为例,在水、土壤、沉积物、植物相中的模拟输出浓度分别为9.72×10-9,9.87×10-5,4.61×10-6,8.28×10-6mol/m3.与当地对应环境相中的DDTs实测浓度2.69×10-9,2.41×10-4,8.15×10-6,2.43× 10-5mol/m3在数量级上吻合较好,验证了模型在南京地区的适用性,并预测了2000~2050年间DDTs在各相中浓度的动态变化情况.比较了各城市间多介质环境迁移特征,结果显示,南京地区的DDTs相间迁移过程与杭州地区近似,主要迁移过程依次为:气-土沉降,水-沉积物相沉降,气-水沉降,土-水流失(土壤侵蚀),水-气扩散.但不同于我国北方地区的以气-土沉降,气-水沉降或水-气扩散为主.南京地区早期的农药施用是DDTs的主要来源,占总输入量的97.69%,大气和土壤中的降解则是DDTs的主要消失途径,占总降解量的95.44%~95.96%,其余4.04%~4.56%通过水、沉积物、植物降解和气/水平流输出而消失.今后几十年中,土壤和沉积物成为DDTs的主要储库,占总量的99.28%左右,并且植物相中的浓度已大幅下降.  相似文献   

3.
以α-HCH与p,p'-DDT为主要研究对象,以泉州湾及其重要汇水流域--晋江流域为研究区域,构建了Level Ⅲ多介质非平衡稳态逸度模型,对该区域α-HCH与p,p'-DDT在各环境相中浓度、容纳能力、储量分布及各相间的迁移通量进行了计算分析,并对模型关键输入参数的灵敏度进行了探讨.结果显示:α-HCH与p,p'-DDT在土壤相,水相以及沉积物相中的模拟计算浓度与野外样品实测平均浓度吻合度较高,验证了模型的有效性;当研究系统达到平衡时,环境各相对α-HCH与p,p'-DDT容纳能力由大到小分别为沉积物,土壤,水及空气; α-HCH在土壤与沉积物中的储量之和为总储量的97.42%, p,p'-DDT则为99.89%,是其主要的汇区;α-HCH与p,p'-DDT从研究区域迁移消逝的主要途径为水的平流输出,在环境相间迁移过程中,α-HCH的主要迁移途径为水体向大气的迁移,而p,p'-DDT的主要迁移途径为水体向沉积物的迁移;灵敏度分析指出辛醇-水分配系数对数值logKow是影响污染物在环境相中浓度分布的最主要因素.  相似文献   

4.
根据太湖地区1/4°×1/6°经纬度网格的地表特征及α-HCH施用量,建立了一个基于同精度网格系统, 包含迁移和传输2个模块的质量平衡模型. 迁移模块使用逸度方法描述α-HCH在每一个网格的多介质环境中的迁移过程,传输模块使用拉格朗日方法描述α-HCH在不同网格间的大气平流和水体径流. 模型模拟了α-HCH在研究区域开始施用至今(1952~2007年) α-HCH在5类4层土壤、气、水和底泥23个环境相中的积累、迁移和残留情况. 模拟值与实测α-HCH浓度对比验证表明两者吻合得很好. 环境温度是影响α-HCH在各环境介质中浓度的最重要因素. 模拟结果表明,在α-HCH使用时期,在土壤中的年积累趋势约为年使用量趋势的5.7%; 在停止使用后,其减少趋势为积累趋势的50%. 在α-HCH使用期间,太湖流域α-HCH的年使用量与其水-气界面沉积通量存在显著的相关性,而与土-气界面通量则无显著相关性. α-HCH停止使用后,太湖流域水-气界面通量表现为向大气的挥发,且自1985年其年挥发通量大于土-气挥发通量. 底泥是α-HCH水-气界面挥发的主要补给源. 2007年太湖流域内α-HCH大气浓度普遍高于流域外大气浓度. 整个模拟时段α-HCH的主要输出途径是流出太湖地区,且以大气平流为主;其次的减少途径是在环境介质中的降解,其中土壤降解量占绝大部分. 2007年环境中残留的α-HCH为总使用量的0.005%,以土壤残留量为主,其次是底泥.  相似文献   

5.
兰州地区HCHs 的跨界面迁移与归趋   总被引:3,自引:0,他引:3       下载免费PDF全文
利用三级逸度模型估算了稳态假设下HCHs 的4 种异构体在兰州地区土壤、大气、水体及沉积物环境相中的迁移通量和浓度分布.结果表明,HCHs 的土壤浓度为0.799mg/kg,在数量级上与实测值吻合较好,其主要的迁移过程是土-气扩散、土壤侵蚀、水-气扩散,土壤中降解和大气平流输出是HCHs 从研究区域消失的主要途径.农业施用是该地区环境中HCHs 最主要的来源,最大的汇是土壤和水体(占环境中总量的99.8%).  相似文献   

6.
环渤海地区2,4,4'-三氯联苯的多介质归趋模拟   总被引:3,自引:1,他引:2  
张毅  马艳飞  宋帅  吕永龙  张盛  吴强 《环境科学》2020,41(6):2625-2634
为探究多氯联苯(PCBs)在环渤海地区的环境多介质迁移和归趋行为,本研究以2,4,4′-三氯联苯(PCB28)为目标污染物,基于区域尺度多介质城乡逸度模型,模拟了稳态条件下PCB28在各环境相中的浓度分布、总量分配以及相间迁移过程,并对模型的输入参数和输出结果分别进行了敏感性和不确定性分析.结果表明,PCB28在淡水、农村土壤、城市土壤和沉积物中的模拟浓度与实测浓度吻合较好,验证了模型的可靠性.PCB28在城市土壤中的浓度最大,浓度均值为5.26×10~(-6) mol·m~(-3),在农村大气中的浓度最小,浓度均值为5.79×10~(-14) mol·m~(-3).当环境系统达到平衡时,土壤是PCB28最主要的"汇",占其在环境中总储量的96.45%.大气相与其他环境相间的相互迁移过程是PCB28在环渤海地区进行空间迁移的主导过程.大气传输是PCB28最主要的入海途径,从农村大气到海水的迁移通量占总入海通量的97.22%.参数敏感性分析结果表明PCB28排放速率、栅格规模及与迁移速率相关的参数是影响大气相中PCB28浓度的关键参数.不确定性分析结果表明PCB28在农村大气和城市大气中的浓度分布都符合对数正态分布,其变异系数分别为0.44和0.41.  相似文献   

7.
成都市典型有机磷酸酯阻燃剂的多介质归趋模拟   总被引:1,自引:0,他引:1  
多介质模型是研究有机污染物在城市环境中行为的主要模型.本文运用三级逸度模型(四相环境介质:大气、水、土壤、沉积物)和城市多介质归趋模型(六相环境介质:大气、水、土壤、沉积物、植物、不透水层)模拟研究了成都市7种典型有机磷酸酯阻燃剂(磷酸三丁酯(Tn BP)、磷酸三异辛酯(TEHP)、磷酸三丁氧乙酯(TBEP)、磷酸三苯酯(TPhP)、磷酸三氯乙酯(TCEP)、磷酸三氯丙酯(TCPP)、磷酸三(2,3-二氯丙基)酯(TDCPP))在环境中的分布和归趋行为,用实测数据对模型进行验证,并进行了参数灵敏度及模型不确定性分析.通过与文献提供的监测数据对比发现,模拟预测浓度与实测浓度基本在1个数量级范围内,符合计算精度.四相环境介质的三级逸度模型中OPEs的模拟结果表明,土壤和沉积物是OPEs的主要归趋,其中,土壤中富集了93.34%的OPEs,沉积物中富集了6.63%的OPEs.而六相环境介质的城市多介质归趋模型(MUM)模拟结果表明,达到平衡时,不透水层中∑7OPEs的浓度为1.01×10~3mol·m~(-3),是大气相浓度的2.42×10~9倍;植物相中OPEs达到2.38mol·m~(-3),是大气相浓度的1.61×10~7倍,说明城市中不透水层及植物相对OPEs的污染归趋有重要影响.  相似文献   

8.
薛南冬  陈宣宇  杨兵  秦普丰  龙雨 《环境科学》2016,37(11):4326-4332
利用Level(Ⅲ)逸度模型模拟了浙东某废旧电器拆解区域多溴联苯醚(PBDEs)3种同系物在大气、水体、土壤和沉积物中的分布及迁移通量.在稳态假设条件下3种PBDEs同系物在环境介质中浓度的模型模拟值与实测值吻合较好,验证了模型的可靠性,通过参数灵敏度分析表明PBDEs的基本性质如蒸气压、正辛醇/水分配系数、在介质中的半衰期是影响化合物在环境相中浓度分布的主要因素.研究发现,在废旧电器拆解区大气中PBDEs对下风向的地区可能造成一定程度的污染;当环境系统达到平衡时,在废旧电器拆解区PBDEs主要蓄积在土壤和沉积物中,占所有环境介质中PBDEs的95%以上,土壤和沉积物是PBDEs污染的重要二次污染源;PBDEs在介质间的迁移以大气-土壤和水体-沉积物途径为主;废旧电器拆解区土壤中降解是PBDEs在环境中消减最主要途径.研究结果将为废旧电器拆解区PBDEs污染的风险评估和控制提供依据.  相似文献   

9.
2005年全球主要污染区γ-HCH土壤残留的模拟与验证   总被引:3,自引:3,他引:0       下载免费PDF全文
采用修改过的CanMETOP模型,修正过的2005年1°(经度)×1°(纬度)精度网格的γ-HCH残留清单作为模型的输入数据,计算了2005年全球大气中γ-HCH的浓度.2005年全球土壤残留为13600t,其中印度、中国、原苏联以及欧洲(去除原苏联)4个区域的土壤残留量占全球γ-HCH总残留量的72%.选取已发表的与研究区域相关的3组2005年的大气γ-HCH的监测浓度与其相对应的模拟结果进行对比,结果显示这3组数据具有很好的相关性,验证了γ-HCH残留清单的准确性和修改后的模型的有效性.  相似文献   

10.
天津污灌区苯并(a)芘的分布和迁移通量模型   总被引:7,自引:4,他引:7       下载免费PDF全文
建立了估算苯并 (a)芘在天津污灌区气、水、土壤及沉积物相间的迁移通量和浓度分布的逸度模型框架 ,利用通量资料作为模型输入 ,利用实测浓度数据验证了模型的可靠性 .结果表明 ,模型对大气、地表水、土壤和沉积物中浓度的估算大体吻合 ,沉积物和土壤是苯并 (a)芘的主要环境归宿 ,而大气中的平衡浓度相对较低 ,水体及土壤中的苯并 (a)芘可能通过作物和鱼体富集而进入生态系统 .  相似文献   

11.
巢湖水域四溴双酚A的多介质迁移与归趋模拟   总被引:2,自引:0,他引:2  
运用Ⅲ级逸度模型,模拟并研究了不同水动力条件下四溴双酚A(TBBPA)在巢湖水-沉积物系统中各环境相的浓度、储量以及相间的迁移通量.结果表明:TBBPA在水相、再悬浮颗粒相和沉积物相中的模拟计算浓度与实测平均浓度吻合度较高,验证了模型的有效性,并通过灵敏度分析探讨了模拟关键参数.当系统达到平衡时,沉积物是TBBPA最大的储库(占系统总储量86%以上).同时,由于较强的水动力条件会改变系统再悬浮特征以及降解半衰期等关键参数,进而降低了各环境相中TBBPA的浓度值,增加了水相和再悬浮颗粒相中的储量比例,并增加了水体-再悬浮颗粒、沉积物-再悬浮颗粒的相间交换通量.此外,TBBPA在巢湖水-沉积物系统中损失的主要途径为沉积物相的降解(占入湖总量87%以上).  相似文献   

12.
刘亚莉  王继忠  彭书传  陈天虎 《环境科学》2016,37(12):4644-4650
近年来,随着大量使用拟除虫菊酯类杀虫剂,导致的环境问题已得到广泛关注.为认识巢湖流域氯菊酯在环境中的赋存状态、迁移转化、环境归趋和生态风险,本研究结合多介质归趋模型和物种敏感性分布模型(SSD),模拟了稳态假设下氯菊酯在巢湖生态系统各环境介质中的浓度分布、迁移通量和去除途径,并通过灵敏性分析和不确定性分析对各输入参数进行了评价.进一步构建污染物的SSD模型,评价了氯菊酯在稳态条件下的潜在生态风险,预测了保护系统中95%的物种时允许最大年输入量.结果表明,氯菊酯在大气相、水体相、沉积物相中的浓度分别为3.99×10~(-16)、5.63×10~(-11)和1.95×10~(-5)mol·m~(-3),沉积物是氯菊酯的最大储库;大气中的氯菊酯主要以挥发形式进入,通过空气颗粒物干沉降消减;水体中的氯菊酯主要以平流输入为主进入,通过底泥沉降消减;沉积物中的氯菊酯主要以底泥沉降形式进入,通过底泥再悬浮和掩埋消减.此外,SSD模型预测的HC5浓度为0.97 ng·L~(-1),假设稳态下预测的水体浓度远低于该值,仅对巢湖流域0.77%的物种产生影响,当年输入量低于78.2 t的情况下,巢湖水体中95%的物种不会受到氯菊酯的威胁.  相似文献   

13.
广州地区典型多溴联苯醚迁移和归趋行为模拟   总被引:3,自引:0,他引:3  
运用多介质逸度模型对典型PBDEs(BDE47、BDE99、BDE209)在广州地区大气、水体、土壤、沉积物中的浓度分布与多介质间的迁移、归趋进行了模拟研究并分析了3种化合物在研究区域环境多介质间的迁移通量,确定其在环境中的主要迁移过程;结合实际监测数据,对模型的可靠性进行验证;以BDE47和BDE209为例,对模型的输入参数进行灵敏度分析;并以BDE209为例,对模型进行不确定性分析.通过模拟浓度与实测浓度的对比,表明模型在该地区具有很好的适用性.结果表明,环境系统达到平衡时,BDE47、BDE99和BDE209在土壤和沉积物中的含量分别占其在环境系统总含量的17.73%和82.26%,14.65%和85.35%,4.81%和95.19%;PBDEs从环境系统中的消失途径主要为大气平流输出和土壤降解;logKow和大气平流输入是影响化合物在环境相中浓度分布的最主要因素;不确定性分析指出BDE209在土壤相中浓度的变异系数最大.  相似文献   

14.
广州地区典型多溴联苯醚迁移和归趋行为模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
运用多介质逸度模型对典型PBDEs(BDE47、BDE99、BDE209)在广州地区大气、水体、土壤、沉积物中的浓度分布与多介质间的迁移、归趋进行了模拟研究并分析了3种化合物在研究区域环境多介质间的迁移通量,确定其在环境中的主要迁移过程;结合实际监测数据,对模型的可靠性进行验证;以BDE47和BDE209为例,对模型的输入参数进行灵敏度分析;并以BDE209为例,对模型进行不确定性分析.通过模拟浓度与实测浓度的对比,表明模型在该地区具有很好的适用性.结果表明,环境系统达到平衡时,BDE47、BDE99和BDE209在土壤和沉积物中的含量分别占其在环境系统总含量的17.73%和82.26%,14.65%和85.35%,4.81%和95.19%;PBDEs从环境系统中的消失途径主要为大气平流输出和土壤降解;logKow和大气平流输入是影响化合物在环境相中浓度分布的最主要因素;不确定性分析指出BDE209在土壤相中浓度的变异系数最大.  相似文献   

15.
鄱阳湖持久性有机污染物(POPs)长距离传输潜力模拟   总被引:1,自引:0,他引:1  
利用TaPL3模型模拟研究了鄱阳湖5种典型持久性有机污染物(POPs)的长距离迁移潜力(LRTP)和总持久性(Pov),比较了不同污染物特征迁移距离(CTD)和Pov的大小,并以p,p’-DDT为例对关键参数进行了灵敏度分析.结果表明,p,p’-DDT、γ-HCH、HCB、PCP和2,3,7,8-TCDD排放到大气中,特征迁移距离(CTDAir)在432 km(2,3,7,8-TCDD)~86479 km(HCB)之间,总持久性(PovAir)在85.6 d(PCP)~2231 d(HCB)之间,土壤相是POPs的主要归宿,约占72.0%;排放到水体中,特征迁移距离(CTDWater)在4207 km(PCP)~1.19×105km(γ-HCH)之间,总持久性(PovWater)在103 d(PCP)~2890 d(HCB)之间,沉积物相是POPs的主要归宿,约占52.5%.环境介质中的半衰期和辛醇-水分配系数的对数是影响污染物CTD和Pov的主要理化性质参数.与同类研究相比,相关POPs在鄱阳湖的CTDAir处于中间水平,但CTDWater偏高,这与鄱阳湖的水体深度和水体流速这两个对CTDWater影响显著的参数较其它研究区域高有关.研究结果可为该地区POPs的环境过程及环境风险的研究提供科学依据.  相似文献   

16.
天津地区土壤中六六六(HCH)的残留及分布特征   总被引:56,自引:4,他引:52  
2001年5月采集并测定了天津地区188个土壤表层样品的α-HCH,β-HCH,γ-HCH和δ-HCH等有机氯农药的残留量.与1981年的残留量相比较,各区县土壤中親CH有较大幅度减少,但4种HCH异构体的残留仍然较高.其中-HCH是最主要的残留污染物,最高浓度超过1000ng/g.1970~1980年HCH施用量较高的地区如今土壤中的残留量仍然较高,城区样品中HCH的残留浓度高于非城区,而污灌区与非污灌区土壤中的残留水平差异不显著.土壤TOC含量与親CH有较为显著的相关关系.  相似文献   

17.
应用EQC模型评估了灭蚁灵和十氯酮在多介质环境中的行为和归趋. 结果表明,在稳定平衡状态下,灭蚁灵和十氯酮在土壤相中的残留率分别达95.6%和94.5%;在稳定非平衡状态下,灭蚁灵除直接排放到大气相、十氯酮除直接排放到水体相中外,还分别约有38%残留在排放相外,它们在大气相和水体相中的浓度水平和质量分布均很低,在沉积物相中则来自于水体相向沉积物相的沉降. 灭蚁灵主要通过大气相的水平迁移以及大气相和土壤相中的化学反应降解输出;十氯酮则主要通过水体相的水平迁移和土壤相的厌氧反应降解输出. 灭蚁灵的主要界面迁移过程是水体相向沉积物相的沉降,其次是沉积物相向水体相的扩散;十氯酮则是大气相向土壤相的迁移,其次是水体相向沉积物相的沉降和大气相向水体相的迁移.   相似文献   

18.
以氯苯为研究对象,利用Ⅲ级多介质逸度模型模拟了稳态假设下第二松花江哨口至松花江村断面的归趋过程,计算了氯苯在大气、水体、悬浮物、沉积物中的分布. 结果表明,当污染源以20mol/h的速率将氯苯排放至水中,模型输出大气中ρ(氯苯)为1.448×10-2 mg/m3,水体中为9.503×10-5 mg/L,悬浮物中w(氯苯)为3.043×10-6 g/kg(以干质量计),沉积物中为1.270×10-5 g/kg. 其中大气中的氯苯占输入总量的94.931%,说明进入水体中的氯苯在环境系统达到平衡后,主要存在于大气中. 水体中氯苯的分布情况为:水相中占98.362%,悬浮物中占0.020%,沉积物中占1.618%,表明水体中的氯苯绝大部分存在于水相中,沉积物和悬浮物中的留存量很少.   相似文献   

19.
典型有机氯农药在珠三角地区多介质环境中的归趋模拟   总被引:1,自引:0,他引:1  
高梓闻  徐月  亦如瀚 《环境科学》2018,39(4):1628-1636
本研究以p,p''-DDT与γ-HCH为目标污染物,通过建立Ⅳ级环境多介质逸度模型,模拟目标污染物在高温高湿气候条件下珠三角地区从1952~2030年的79年间在环境介质中迁移转化随时间和温度变化的规律.模拟结果较好地反映了p,p''-DDT与γ-HCH浓度随农药施用和禁用等农业政策而经时变化的情况:持续施用导致p,p''-DDT与γ-HCH在气、水、土、底泥中的浓度随时间逐年增加;有机氯农药被禁止使用,则导致二者浓度逐渐下降并趋于稳定;预测到2030年p,p''-DDT在气、水、土、泥中的浓度分别为6.1×10-12、3.2×10-9、6.07×10-7和8.72×10-7 mol·m-3;γ-HCH的浓度则分别为3.37×10-11、1.14×10-8、1.21×10-6和4.18×10-7 mol·m-3.通过将温度设计为变量参数对模型进行校正后的模拟值比恒温模拟值更接近实测值.结果表明,在整个环境介质中出现有机氯农药由大气分别向土壤和水体、土壤向水体、水体向底泥传输的规律,并最终赋存于土壤和底泥中;有机氯农药排放量、降解速率、温度及辛醇-水分配系数Kow是模型主要的敏感参数;不确定性分析显示整体参数的改变对大气模拟浓度影响最大;有机氯农药在环境中的浓度分布存在季节性差异,温度变化会影响有机氯农药在环境中的分配.  相似文献   

20.
闽江口水、间隙水和沉积物中有机氯农药的含量   总被引:18,自引:4,他引:14  
利用GC-ECD和GC-MSD对1999年11月闽江口水、间隙水和沉积物中的有机氯农药进行了研究.结果显示,闽江口水中有机氯农药的含量范围是0.532~1.82μg/L,间隙水中有机氯农药的含量为4.54~13.7μg/L,沉积物(于重,以下讨论到的沉积物,无特别说明都是干重表示):28.79~52.07μg/kg;与其他河口如珠江口、九龙江口相比,闽江口的污染水平居中.间隙水的污染物浓度普遍高于其上覆水的浓度,而沉积物中的浓度大于间隙水、表层水,是由于有机污染物在水体中倾向于吸附在沉积物颗粒,并且通过再悬浮从底层向上迁移.对水体中有机氯农药各组分的含量及特征进行了分析,发现有机氯农药的主成分为:β-HCH,DDE,Heptachlor(七氯),Endosulfan Ⅱ(硫丹),Methoxychlor(甲氧滴涕).DDE、β-HCH、EndosulfanⅡ分别占DDTs、HCHs和硫丹的主要部分;有机氯农药各组分间有正相关性,表明其河口有机氯农药陆源的土壤输入与相似的环境行为;对该河口的污染水平进行了初步的评价,HCHs符合国家海水水质一级标准,DDTs则超过该标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号