首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
长江三角洲区域表土中多环芳烃的近期分布与来源   总被引:13,自引:10,他引:3  
采集长江三角洲区域11个地市范围内的243个样点的表层土壤样品,针对29种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)浓度的空间分布模式、组分谱特征以及初步排放源进行分析.结果表明,研究区域内总PAHs浓度范围在21.0~3 578.5 ng·g~(-1),算术均值310.6 ng·g~(-1),标准偏差459.1 ng·g~(-1).区域PAHs浓度表现出较大的空间分布差异.此外,表土PAHs浓度与表土总有机碳分数TOC呈现正相关.研究涉及的11个地市中,表土PAHs浓度的高值主要集中在苏州辖区,可达759.0 ng·g~(-1)±1 132.9 ng·g~(-1);而无锡(565.3 ng·g~(-1)±705.5 ng·g~(-1))、上海(349.4 ng·g~(-1)±220.1 ng·g~(-1))两市表土的PAHs平均含量仅次于苏州.全区域表土中PAHs组分以2~4环的中、低环组分为主,其中低环比例最高.利用特征比值与主成分分析,可初步判断长江三角洲地区表土中PAHs的近期主要排放源为混合源,即工业燃煤和生物质的燃烧过程同时,局部区域还涉及交通尾气排放.  相似文献   

2.
温州城市河流中多环芳烃的污染特征及其来源   总被引:10,自引:7,他引:3  
利用气相色谱/质谱联用仪(GC/MS)对温州九山外河和山下河春夏季水体和表层沉积物中18种多环芳烃(PAHs)进行了分析.结果表明,研究河段河水和沉积物中18种PAHs含量范围为146.74~3 047.89 ng·L-1和21.01~11 990.48ng·g-1,春季水体和沉积物中的PAHs含量显著高于夏季.水体和沉积物中主要以2、3、4环的中低环PAHs为主,但沉积物中5、6环PAHs的含量相对高于水样中的含量.研究河段春季和夏季水样中EBaP值分别为1.69~51.95 ng·L-1和0~3.03ng·L-1,春季水样中有80%超过我国地表水环境质量标准中BaP的限值.春夏季沉积物中ΣPAHs含量均小于ERM限值,只有部分PAHs组分含量高于ERM值,可能会对生物产生较大的毒副作用.通过PAHs特征化合物分子比值法和主成分分析法判源,发现研究河段水体表现出石油源和燃烧源的复合来源特征,沉积物表现出燃烧源占更大比例的复合来源特征。  相似文献   

3.
为了研究深圳大鹏湾海域沉积物和生物体中多环芳烃的污染状况,2011年10月在大鹏湾采集表层沉积物及鱼类、虾类和贝类等生物样品,采用气相色谱-质谱法(GC-MS)分析了16种优先控制多环芳烃(PAHs)的含量.结果表明,大鹏湾海域表层沉积物和生物样品中PAHs总量范围分别为216.56~1 314.92 ng·g-1(干重,下同)和70.88~251.90 ng·g-1(湿重,下同);生物样品按平均含量计,鱼类最高(171.52 ng·g-1),贝类次之(134.75 ng·g-1),虾类最低(123.35 ng·g-1).与全球其他海域相比,大鹏湾海域表层沉积物和生物体PAHs污染处于中等水平.沉积物中PAHs的组成以4环为主,来源分析表明该海域PAHs污染主要来源于化石燃料燃烧源和石油污染源的共同输入.生物体中PAHs主要为2~3环PAHs,这与其生活习性和污染物的生物可利用性等因素有关.风险评价表明,大鹏湾表层沉积物中的PAHs在一定程度上可能会对该海域生物产生不利影响;生物样品PAHs的苯并(a)芘等效浓度值相对较高,长期食用这些水产品可能会有潜在的健康风险.  相似文献   

4.
以上海市为例,分析了城市地表灰尘、土壤和行道树叶片累积PAHs的水平差异,探讨了形成这种累积规律的原因与机制.结果发现,同一功能区内,地表灰尘和土壤中PAHs含量较高,分别为8 992~141 723 ng·g-1(均值为54 964 ng·g-1)、9 306~146 689 ng·g-1(均值为56 883 ng·g-1);而悬铃木叶片和小叶黄杨叶片内含量较低,且悬铃木叶片中的含量普遍高于小叶黄杨叶片,含量分别为2 423~32 883 ng·g-1(均值为12 983 ng·g-1)、1 498~19 418 ng·g-1(均值为7 612 ng·g-1).不同功能区之间,地表灰尘和土壤中PAHs总量存在显著差异,而悬铃木叶片和小叶黄杨叶片对PAHs的累积水平相似.灰尘和土壤中PAHs组分构成具有明显的功能区差异,且高环PAHs含量占主导地位.植物叶片中PAHs组分构成在不同功能区具有相似性,且低环组分占绝对优势,高环组分含量很少.这种累积规律与PAHs的理化性质,以及各介质累积PAHs的主要途径和方式密切相关.  相似文献   

5.
应用气相色谱-质谱联用方法测定了珠江三角洲地区6种主要树种叶片多环芳烃(PAHs)的含量,并对相应的叶脂含量、叶面积、比叶面积进行了测定,探讨了叶片PAHs含量特征和种间差异的影响因素.结果显示,松针PAHs含量显著高于阔叶,马尾松松针含量最高(1 034.7 ng·g-1),荷木含量最低(199.7 ng·g-1).在所有样品中,芴、菲、荧蒽、芘、世面(艹屈)为主要的PAHs组分,3、4环PAHs含量占∑PAHs的80%以上,各环化合物与∑PAHs在不同显著性水平上呈显著正相关关系.按脂含量计算PAHs含量能大大缩小种间含量的差异,高、低值相差约2倍(分别为6.8 ng·mg-1和2.7 ng·mg-1);按单位叶面积计算的PAHs含量进一步扩大了种间差异,最高值(15.3 ng·cm-2)约最低值(1.9 ng·cm-2)的8倍.进一步分析表明,ΣPAHs、3环PAHs、4环PAHs与脂含量呈良好线性正相关关系、与比叶面积表现出一定的线性负相关关系,显示两者是影响叶片PAHs含量种间差异的重要因素.  相似文献   

6.
舟山青浜岛不同环境介质中PAHs的分布特征   总被引:2,自引:2,他引:0  
于2013年7月在青浜岛上采集11个土壤样品、3个大气被动采样样品以及周边3个海水样品,分析了样品中16种多环芳烃(PAHs)的含量,并对其分布特征、来源、生态风险进行了讨论.结果表明,土壤、海水和大气中Σ16PAHs的含量范围分别为60.30~123.34 ng·g-1(平均值为105.49 ng·g-1)、45.96~101.08 ng·L-1(平均值为66.45 ng·L-1)和5.09~5.41ng·d-1(平均值为5.35 ng·d-1).分布特征为:潮汐带土壤中PAHs含量低于非潮汐带;3个海水样中,以靠近水文条件复杂的海域内样品中的PAHs含量最高;岛上大气中PAHs分布均匀.土壤、海水和大气中PAHs主要以2~4环的PAHs为主;通过比值法和因子分析得出,青浜岛土壤中的PAHs来源于煤、木炭等生物质燃烧以及柴油、汽油的燃烧,海水和大气中的PAHs来源于混合源.生态风险评价结果表明青浜岛土壤和周边海水中PAHs生态风险较低.  相似文献   

7.
谢婷  张淑娟  杨瑞强 《环境科学》2014,35(7):2680-2690
2007年8月采集了青藏高原中部与北部6个典型湖泊流域的土壤与牧草样品,分析了样品中多环芳烃和有机氯农药(包括六六六和滴滴涕)的污染水平.土壤样品中Σ16PAHs、ΣHCHs和ΣDDTs的浓度范围分别为60.6~614 ng·g-1(平均194 ng·g-1)、0.06~0.74 ng·g-1(平均0.31 ng·g-1)和N.D.~0.17 ng·g-1(平均0.07 ng·g-1).牧草样品中Σ15PAHs(不包括萘)、ΣHCHs和ΣDDTs的浓度分别为262~519 ng·g-1(平均327 ng·g-1),0.55~3.92 ng·g-1(平均2.17ng·g-1)和0.20~2.19 ng·g-1(平均0.92 ng·g-1),均远低于欧洲高山中相应介质中POPs的浓度.牧草的生物浓缩效应显著,其生物浓缩因子达到4.2~19.3.POPs的浓度分布与有机质/脂肪含量、海拔均无显著相关关系.PAHs的组成以较轻组分(2、3环PAHs)为主,占总浓度的80%以上.PAHs的特征单体比值表明生物质和化石燃料的低温燃烧是青藏高原PAHs的主要来源,同时较低的α/γ-HCH比率和较高的o,p’-DDT/p,p’-DDT比率表明,林丹以及三氯杀螨醇的使用对高原介质中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型,推断冬季青藏高原中部与北部的污染主要受西风带影响,夏季高原中部位点的污染物主要源自印度次大陆,而北部位点还受到中国内陆省份的影响.  相似文献   

8.
岩溶地下河流域表层土壤多环芳烃污染特征及来源分析   总被引:10,自引:8,他引:2  
蓝家程  孙玉川  师阳  徐昕  袁道先  胡宁 《环境科学》2014,35(8):2937-2943
采集重庆南山老龙洞地下河流域农田土壤(0~20 cm),利用气相色谱-质谱联用仪(GC/MC)测定了土壤样品中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,分析其含量和组成,污染水平及污染来源.结果表明,流域内不同地点表层土壤16种PAHs总量变化范围为277~3301 ng·g-1,平均值为752.6 ng·g-1±635.5 ng·g-1,所有样品均遭受污染,其中57%为轻污染,29%为污染土壤,而14%为重污染.多环芳烃的组成以2~3环为主,占总量的28.72%~72.68%,平均值为48.20%;4环和5~6环含量分别为7.77%和34.03%.土壤PAHs含量与有机质(SOM)含量显著相关,而与pH值相关性不强.比值法和主成分分析(PCA)表明,流域内土壤主要来自交通排放与煤炭、石油及生物质燃烧的混合源以及石油源.  相似文献   

9.
官厅水库周边蔬菜地表土中多环芳烃的污染   总被引:6,自引:1,他引:5  
为掌握北京市备用水源地——官厅水库周边的蔬菜地表土中多环芳烃(PAHs)的污染状况及来源,于2008年11月在延庆县小丰营蔬菜产地采集了48个表土样品(0~20cm)测定PAHs含量,并综合特征化合物比值法和因子分析/多元线性回归两种方法推断了土壤中PAHs来源.结果表明,土壤中15种PAHs单体(PAH15)的含量均服从正态分布或对数正态分布,∑15PAH几何均值为(118.71±28.63)ng.g-1(干重含量,下同),算术均值为(139.57±85.65)ng.g-1.以荷兰土壤标准衡量,71%的样点归类PAHs弱污染,与文献报道的大多数国内外农业土壤相比,尚属于较清洁的水平.成分谱分析表明,研究区域土壤中的PAHs分布谱以3环~4环化合物为主,优势化合物为PHE、FLA、FLO、PYR.校正后的FLA/(FLA+PYR),ANT/(ANT+PHE)比值表明该研究区域PAHs主要来自燃烧源.通过因子分析提取了3个主成分,分别代表①燃煤和交通燃油;②生物质燃烧和炼焦;③燃油.多元线性回归分析的结果表明,这3种来源对官厅水库周边蔬菜地表土中PAHs的贡献分别是54.0%,39.9%和6.1%.结合两种源解析方法和排放源分析,除该区域存在明显生物质燃烧源以外,其它来源的PAHs经过了一定距离的大气迁移和沉降.  相似文献   

10.
天津滨海工业区土壤中多环芳烃的污染特征及来源分析   总被引:15,自引:0,他引:15  
采集天津滨海工业区38个表层土壤样品,利用GC/MS分析技术,研究了土壤中16种优控多环芳烃的含量和组分特征,运用主成分因子载荷方法分析了其污染来源,并初步评价了其风险水平.结果表明,该区域内94.7%土壤已被污染,其中重污染土壤占39.5%,最高污染样点PAHs含量高达5991.7 ng·g-1,平均含量为1148.1 ng·g-1,且城区土壤残留水平明显高于乡村土壤;PAHs的组分特征为以毒性水平较高的高环化合物为主;其污染来源主要是煤、天然气和汽油燃烧组成的混合源.  相似文献   

11.
随着城市化和工业化进程加速,城市土壤多环芳烃(PAHs)含量及污染状况受到广泛关注.以石嘴山市为例,分析8个城市功能区156个表层土壤(0~20 cm)样品PAHs含量的空间分布特征,运用单因子指数、内梅罗综合指数和终生癌症风险增量模型评价土壤PAHs污染状况,利用正定矩阵因子分解模型(PMF)对PAHs来源进行解析.结果表明,石嘴山市表层土壤PAHs总含量均值为489.82 ng·g-1,除芘(Pyr)外的15种PAH单体变异系数均大于100%,属强变异;不同功能区土壤PAHs含量呈现出:交通区(1217.61 ng·g-1) > 工业区(809.58 ng·g-1) > 公园(273.66 ng·g-1) > 文教区(268.18 ng·g-1) > 商业区(240.05 ng·g-1) > 农业区(226.81 ng·g-1) > 医疗区(211.90 ng·g-1) > 居民区(183.49 ng·g-1);内梅罗综合指数显示82.58%的样点不存在污染,轻微、轻度和中度污染占比分别为6.45%、4.52%和0.65%,5.8%的样点存在重度污染;健康风险评价结果表明,皮肤接触和误食是最主要的土壤PAHs暴露途径,其健康风险处于可接受水平;源解析表明石嘴山市土壤PAHs的主要来源为交通排放源、煤炭燃烧源、生物质/重油燃烧的混合源以及石油源,其贡献率分别为10.5%、36.6%、50.3%和2.6%,且高值大多分布在工业或煤炭生产区域.研究结果可为工业城市土壤污染研究提供参考,并对预防土壤污染、保障土壤环境质量及人体健康安全有积极作用.  相似文献   

12.
吴彦瑜  胡小英  洪鸿加  彭晓春 《环境科学》2013,34(10):4031-4035
研究分析了废旧汽车拆解区土壤剖面的美国EPA优控的16种多环芳烃的纵向分布.结果表明,表层土壤中16种多环芳烃总含量达到了17 323 ng·g-1,其中芘(Pyr)、苯并[a]蒽(BaA)、芴(Flu)含量最高,分别达到11 820、1 234和1 083 ng·g-1.汽车拆解区表面和土壤深度为10 cm的土壤均达到了重度污染级别;深度在50~350 cm之间的土壤为轻度至中度污染,当土壤深度超过400 cm,土壤基本未受到污染.但是,7种致癌性PAHs(Chr、BaA、BbF、BkF、BaP、DahA、IcdP)总量在土壤深度达到850 cm时仍有34.15 ng·g-1.随着土壤深度的增大,多环芳烃含量急剧降低,当土壤深度超过300 cm,三环的菲(Phe)、荧蒽(Fl)和二氢苊(Ace)成为优势组分.土壤剖面菲(Phe)/蒽(Ant)比值和荧蒽(Fla)/芘(Pyr)、Fluo/Pyr、BaA/(BaA+Chr)等参数表明,土壤表面的多环芳烃主要来源于石油污染.  相似文献   

13.
岩溶地下河流域水中多环芳烃污染特征及生态风险评价   总被引:13,自引:8,他引:5  
利用气相色谱-质谱联用仪(GC/MS)测定了老龙洞地下河流域水中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,研究了流域内PAHs组成、污染水平,并对其进行了生态风险评价.结果表明,老龙洞地下河水中ΣPAHs含量变化范围为81.5~8 019 ng·L-1,表层岩溶泉ΣPAHs含量为288.7~15200 ng·L-1,地表水ΣPAHs含量为128.4~2 442 ng·L-1;受黄桷垭镇污水的影响,地下河水相对于地下水补给来源的落水洞和地表水含量较高.流域内水中PAHs均以低环为主,尤其是3环占主导.受污水、季节的影响及PAHs物理化学性质的差异,水中PAHs月变化呈现不同的变化特征.地表水、落水洞污水排放对地下河PAHs来源起重要作用.流域内水中PAHs以低环污染为特征,所有检测到的PAH化合物处于中等污染和重污染风险.  相似文献   

14.
为探究岩溶槽谷区土壤中多环芳烃(PAHs)的环境行为,选取典型的竹林地、灌丛地和耕地作为研究对象,运用气相色谱-质谱联用仪定量分析土壤中的PAHs.结果表明,土壤剖面中PAHs污染水平表现为竹林地(204.13 ng·g-1)>耕地(175.47 ng·g-1)>灌丛地(106.00 ng·g-1),土壤质量总体良好.3种土地类型均表现为浅层土壤的PAHs含量显著高于深层土壤(p<0.05),表明岩溶区土壤对防止地下水污染具有重要意义;2~3环PAHs易运移至深层土壤,而4~6环PAHs受TOC含量的影响则主要积聚在浅层土壤,富集能力表现为灌丛地>耕地>竹林地;PAHs运移特征主要受控于有机质的吸附和水的溶解两种机制,PAHs和土壤的理化性质是影响PAHs运移的重要因素.结合同分异构体比值法和主成分分析法的源解析结果,得出研究区土壤中PAHs主要源于当地能源燃烧和交通污染,而大气沉降是重要污染途径.  相似文献   

15.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   

16.
选取典型表层岩溶泉域内的土壤剖面和表层岩溶泉水为研究对象,采用气相色谱(GC-μECD)对土壤和地下水中的有机氯农药(organochlorine pesticides,OCPs)进行定量分析,研究了有机氯农药在岩溶区上覆土壤中的垂直迁移以及对地下水的影响.结果表明,研究区所有土壤剖面中,HCHs和DDTs均有检出.HCHs和DDTs的含量范围分别为:0.77~18.3 ng·g-1(平均5.16 ng·g-1)和0.34~226 ng·g-1(平均16 ng·g-1).研究区土壤中的HCHs和DDTs峰值主要出现在土壤亚表层.在一年的观测期间,4个表层岩溶泉中均有HCHs和DDTs检出.泉水中HCHs和DDTs的含量范围分别为:2.09~60.1 ng·L-1(平均12 ng·L-1)和N.D~79.8 ng·L-1(平均9.16 ng·L-1).后沟泉、柏树湾泉、兰花沟泉的HCHs和DDTs含量以及水房泉中的HCHs含量均呈现出雨季高于旱季的特点.泉水中的HCHs、DDTs含量与泉域内土壤中的HCHs、DDTs含量并没有很好的对应关系.研究表明,TOC、土壤含水量、黏粒含量、p H均对后沟泉域土壤中有机氯农药垂直迁移产生抑制作用,致使后沟泉域土壤中有机氯农药含量虽然在4个泉域中最高,但泉水中的含量却最低.而在水房泉泉域,这4个因素对有机氯农药的垂直迁移均没有抑制作用,因此水房泉泉域土壤中有机氯农药含量虽然最低,但泉水中有机氯农药的含量却较高.  相似文献   

17.
孙盼盼  谢标  周迪  宋一民  杨浩 《环境科学学报》2016,36(10):3615-3622
采用GC-MS检测了滇池宝象河水库沉积物中16种美国环保署(US EPA)优先控制的多环芳烃(PAHs)的含量,并对其垂直分布特征及来源进行分析,以此了解宝象河水库近年来PAHs的变化.结果表明,水库沉积物中16种PAHs均有检出,其含量范围为162.26~762.24ng·g~(-1),平均值为423.30 ng·g~(-1).自底层50 cm至表层,沉积物中PAHs含量呈上升趋势.从多环芳烃环数来看,沉积物中的PAHs以2~3环为主,其含量为128.34~518.81 ng·g~(-1),平均值为279.88 ng·g~(-1),占PAHs总量的42.2%~84.1%,平均值为67.6%.FLA/(FLA+PYR)、Ba A/(Ba A+CHR)和Icd P/(Icd P+Bghi P)3组比值及PAHs各组分的分析结果表明,燃烧过程是沉积物中PAHs的主要来源,主要为煤炭、生物质的燃烧.PAHs含量与总有机碳(TOC)之间有显著正相关关系,TOC影响宝象河水库沉积物中PAHs的分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号