首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
一、前言能见度除了受气象因子如风速、风向、降水、相对湿度、风沙、雾、逆温等等的影响外,还受非气象因子的影响,如大气污染可以使能见度变坏。这是因为微粒物质对光有吸收和散射作用,致使能见度降低。当然它对能见度影响的大小与微粒的大小、浓度和性质有关,当微粒的浓度很低时,它对能见度几乎没有影响;当微粒浓度足够高时,一些气体可使空气变色,如高浓度的二氧化氮导致天空变成褐色。然而一般在污染的大气里能见度主要由其  相似文献   

2.
于兴娜  马佳  朱彬  王红磊  严殊祺  夏航 《环境科学》2015,36(6):1919-1925
为了解南京北郊秋冬季相对湿度与气溶胶理化特性对大气能见度的影响,利用2012年秋冬季气象要素资料、颗粒物浓度及其主要成分和气溶胶粒子谱分布等观测数据,分析了南京北郊大气能见度与气象要素、颗粒物污染之间的关系.结果表明,南京北郊秋冬季节平均大气能见度仅为4.76 km.颗粒物浓度与能见度存在一定的负相关关系,尤其细粒子对能见度的影响更为显著.随细粒子质量浓度和相对湿度(RH)的增大,低能见度出现的频率呈现上升趋势.能见度从5~10 km衰减到5km时,PM10和PM2.1质量浓度分别增加了7.56%和37.64%;其中SO2-4和NO-3质量浓度均有显著增加.气溶胶粒子数浓度对能见度的影响与相对湿度有关,粒径0.5~2μm的气溶胶数浓度随RH增加增长缓慢,而2~10μm范围内的粒子数浓度随RH增加而减小;结合气溶胶表面积浓度与能见度进行相关性分析,表明0.5~2μm的细粒子及相对湿度是导致南京北郊秋冬季大气能见度下降的主要因素.  相似文献   

3.
北京地区大气消光特征及参数化研究   总被引:7,自引:6,他引:1  
陈一娜  赵普生  何迪  董璠  赵秀娟  张小玲 《环境科学》2015,36(10):3582-3589
为了研究大气消光系数的特征及规律,从2013~2014年在北京地区对大气能见度、气溶胶质量浓度、气溶胶散射系数、黑碳质量浓度、反应性气体以及气象要素开展了系统加强观测,并对已发表的气溶胶光散射吸湿增长因子[f(RH)]拟合方案进行了对比,系统分析了大气消光特征和影响大气消光能力的关键因子,最终建立了大气消光系数参数化模型,探讨不同季节、不同污染条件下参数化方案的特征.结果表明,气溶胶散射作用占环境总消光作用的94%以上,在夏秋季,相对湿度可以使气溶胶的散射能力提升70%~80%.包含气溶胶质量浓度和相对湿度两个因子的参数化模型,可以较好地体现出气溶胶和相对湿度对大气消光系数的影响机制,以及消光能力的季节差异.  相似文献   

4.
长江三角洲地区冬季能见度特征及影响因子分析   总被引:4,自引:0,他引:4  
利用Micaps提供的2013和2014年冬季长江三角洲地区(以下简称长三角)28个站点的地面常规观测资料、NCEP FNL再分析资料和国家环境保护部发布的PM2.5质量浓度自动检测数据,分析了长三角冬季大气能见度特征,以及空气污染物和气象条件对能见度的影响.2013年冬季长三角霾天发生频率为53.4%.多元非线性回归分析表明,PM2.5质量浓度、地表10m风速、500~850hPa水平风垂直切变、相对湿度、925~1000hPa垂直温差、850~925hPa假相当位温差这6个因子能够解释能见度变化的81.6%.气象条件对能见度的作用与污染物浓度相当,热力因子的贡献大约是动力因子的2倍.PM2.5质量浓度越低,空气质量越好,以及相对湿度大于70%时,相对湿度通过气溶胶吸湿增长对能见度的作用越强.考虑PM2.5质量浓度的影响时,相对湿度对能见度的贡献提高了1倍.利用2014年冬季资料验证多元拟合方程,效果较好.  相似文献   

5.
李军  王京丽  屈坤 《中国环境科学》2020,40(8):3322-3331
基于2016~2017年冬季乌鲁木齐市城区PM2.5和气象要素观测数据,采用线性和非线性回归、变量分类分析等统计方法,研究了大气能见度与相对湿度(RH)、PM2.5浓度的定量关系.结果表明:乌鲁木齐市冬季能见度日变化呈单峰形分布,中午13:00前后和夜晚20:00前后能见度分别达到最高和最低.相对湿度增加、PM2.5污染加重都会造成冬季大气能见度明显降低,但低能见度天气的主要影响因素是PM2.5污染.在RH < 90%时PM2.5累积及其吸湿增长对能见度变化起控制作用,特别是70%£RH < 90%时,PM2.5浓度对大气能见度影响最大.RH390%时相对湿度成为决定因素.在PM2.5污染逐渐加重的过程中,相对湿度对能见度的影响在减弱.能见度增加与PM2.5浓度降低之间存在非线性响应.在PM2.5污染由严重减轻至中度污染级别过程中,能见度改善并不明显.只有把PM2.5浓度控制在115μg/m3以下(轻度污染或优良级别),PM2.5浓度降低,能见度才开始出现显著提高.但冬季要达到较高能见度水平(8km),PM2.5浓度需要继续严控至39μg/m3以下.本文对乌鲁木齐市冬季大气污染治理具有重要指导意义.  相似文献   

6.
青岛大气颗粒物数浓度变化及对能见度的影响   总被引:6,自引:5,他引:6  
为研究青岛地面大气颗粒物数浓度的变化及对能见度的影响,2010年9月~2011年8月使用便携式light house激光粒子计数器进行了大气颗粒物数浓度观测,利用Hysplit模式计算大气颗粒物的后向轨迹,运用统计分析方法初步探讨了气象因子对大气颗粒物数浓度和能见度的影响.结果表明,青岛大气颗粒物数浓度冬春最高,秋季次之,夏季最低;源自新疆、甘肃一带的气团颗粒物数浓度偏高,而来自于东北方向及海上的大气颗粒物数浓度较低;大气颗粒物数浓度变化与风速、相对湿度和混合层高度的变化呈现较好的负相关关系.当气团来源于西或西北方向,地面风向为南到东南风且混合层高度较低时,细粒子数浓度较高,容易出现低能见度现象.  相似文献   

7.
长江三角洲冬季一次低能见度过程的地区差异和气象条件   总被引:1,自引:0,他引:1  
祁妙  朱彬  潘晨  苏继锋 《中国环境科学》2015,35(10):2899-2907
采用NCEP再分析资料、MICAPS地面、高空气象资料以及国家环保部空气质量监测资料,对2014年2月20~22日长江三角洲地区一次低能见度过程地区差异和气象条件进行了分析.天气形势分析表明,长三角地面处在高压的控制下,地面风速较小,使污染物积累,有利于低能见度(雾-霾)的形成和维持.根据不同区域的雾、霾分布和日变化特征,将长江三角洲地区分为3个子区域:I区为江苏大部(雾霾混合型),II区为上海及其周边(霾类型),III区为浙江大部(雾类型),该区域白天能见度较高,夜间能见度较低的特征是由湿度因子造成的.影响I区能见度变化的主要原因是:热力原因:大气对流层低层的层结稳定;湿度原因为:空气较湿润,气溶胶粒子吸湿性增长;动力原因主要是垂直方向和水平方向的大气扩散能力弱;污染因子对能见度变化的影响较小.影响II区能见度变化的主要原因是PM2.5浓度高导致的污染,热力因子、湿度因子和动力因子对能见度的变化影响很小.影响III区能见度变化的热力原因是:大气对流层低层层结稳定、近地面存在逆温;湿度原因是因为:空气较湿润,气溶胶粒子吸湿性增长;动力原因是因为边界层高度较低导致的垂直扩散能力较差.各个区域的气象因子解释方差的计算结果表明:I区湿度因子和动力因子对能见度的影响更大,III区.湿度因子对能见度的影响更大.  相似文献   

8.
天津市大气能见度与颗粒物污染的关系   总被引:9,自引:0,他引:9       下载免费PDF全文
利用天津市大气边界层观测站2009年能见度、相对湿度、风速逐时观测资料和2009年3月9~21日期间颗粒物的膜采样数据,分析天津市大气能见度与颗粒物污染的关系.结果表明,颗粒物质量浓度与能见度变化总体呈负相关,小粒径颗粒对能见度的影响作用明显,随着能见度的降低,小粒径颗粒与大粒径颗粒浓度的比值明显增加.能见度与颗粒物中总碳质量浓度变化呈负相关. SO42-,NO3-,OC和EC对大气消光贡献平均值分别为28.7%,6.1%,27.6%和19.2%.表明观测期间颗粒物中SO42-,OC对能见度的影响明显.  相似文献   

9.
通过分析2008~2015年临安区域大气本底站在线观测能见度,研究长江三角洲背景地区能见度的时间变化特征及影响因素,尝试建立长江三角洲能见度特征值的筛选方法,探讨长三角能见度的区域特征值,评估人为源排放对能见度的影响程度.结果表明,临安站能见度的日变化分布表现为单峰型形态,与相对湿度的日变化分布呈显著负相关;季节变化特征表现为春夏季较高,秋冬季较低,主要受到大气污染季节变化的影响;2008~2015年临安站春、夏季能见度的年增长幅度较大,秋冬季则保持稳定.高相对湿度、高污染是造成临安地区低能见度的重要因素.结合气象要素和大气污染物排放建立能见度特征值的筛选方法,得到长三角背景地区的能见度特征值为(9.7±2.2)km,人类活动的影响将导致能见度下降约4.4km.  相似文献   

10.
北京大气能见度和消光特性变化规律及影响因素   总被引:1,自引:0,他引:1  
利用长时间序列的大气能见度与湿度等气象资料以及近年来大气污染物的监测数据,探讨了北京大气能见度及消光特性的变化规律及影响因素.结果显示:近50年来北京大气消光作用存在降-升-降的变化过程,1954~1967年以下降为主,20世纪60年代中期至70年代明显上升,此后特别是20世纪90年代以来北京大气消光作用基本呈缓慢下降趋势,能见度变化过程与此相反.从区域分布看北京大气消光作用北部及西部山区低于平原区,平原区存在由北向南逐渐升高的分布规律,即北部平原区低于中部市区,中部市区低于南部平原区.近10年来北京大气颗粒物消光作用区域差异逐渐减小,这与大气污染区域分布变化趋势基本一致.北京大气消光作用20世纪80年代之前冬高夏低,之后转为冬低夏高,对应于大气污染由煤烟型向综合型的转变.大气消光作用平均日变化呈双峰双谷型,09:00和21:00形成双峰,06:00和16:00处于双谷,但月际差异明显.大气消光作用受颗粒物浓度与相对湿度影响显著.高消光作用通常与高相对湿度和高颗粒物浓度有关;低消光作用出现在湿度和颗粒物质量浓度同时较小情况.相对湿度低于70%时,大气颗粒物消光作用会随着PM2.5浓度的升高明显增强,消光作用与PM2.5浓度存在线性关系;当相对湿度大于70%时,消光作用对PM2.5浓度变化的响应并不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号