首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 167 毫秒
1.
生活污水预沉淀-SNAD颗粒污泥工艺小试   总被引:1,自引:1,他引:0  
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   

2.
随着城镇生活污水排放标准的日益严格,现有城市污水处理厂普遍面临提标改造的挑战,较多污水处理厂采用三级脱氮工艺降低出水中氮素含量.本研究以磁混凝预处理后的生活污水为研究对象,采用厌氧氨氧化工艺作为三级脱氮工艺,构建含有生物膜和絮体污泥的UASB反应器,处理A/O(二级生化单元)出水,研究串联、分流进水以及回流等条件下系统的脱氮及有机物去除性能,并通过微生物群落分析揭示各阶段的菌群结构变化.结果表明,当UASB串联A/O时,系统出水氨氮、TN和COD分别为1.21、10.02和30.00 mg·L-1.当进水分流比为15%时,提升了UASB的脱氮速率(从0.04升高至0.06 kg·m-3·d-1),UASB分别贡献了系统TN、NH4+-N和COD去除总量的23.4%、20%和20.7%,当系统出水回流到A区时,能进一步降低出水污染物浓度,NH4+-N仅为1 mg·L-1,TN为12.03 mg·L-1.微生物群落结构分析结果表明,在A/O反应器内Proteobacteria为主要菌门,UASB内Planctomycetes门实现富集,生物膜中Planctomycetes丰度为1.93%~8.39%,厌氧氨氧化细菌(以Candidatus Kuenenia为代表)在生物膜和污泥絮体中丰度分别为0.77%~2.19%和0.01%~1.49%.本研究结果表明,基于厌氧氨氧化的三级脱氮工艺能够实现生活污水的深度脱氮,在不增加曝气与碳源投加成本的同时高效去除氨氮、总氮,可为城市生活污水处理厂改造升级提供技术支撑.  相似文献   

3.
在低总氮(TN)浓度条件下考察了Fe2+促进串联两级ANAMMOX生物膜反应器脱氮性能的可行性.结果表明,ρ(Fe2+)为5、10和15 mg·L-1能够有效促进厌氧氨氧化反应,ρ(Fe2+)为10 mg·L-1对两级ANAMMOX生物膜反应器的促进程度最大,在进水ρ(TN)约为150 mg·L-1,总氮负荷(NLR)为0.62 kg·(m3·d)-1条件下,最高总氮去除率(NRE)可达81.71%.添加Fe2+可促进系统胞外聚合物(EPS)的分泌以及亚铁血红素c的合成.批次试验结果进一步验证了ρ(Fe2+)为5、10和15 mg·L-1时对厌氧氨氧化菌活性的促进作用,其中ρ(Fe2+)为10 mg·L-1时的比厌氧氨氧化活性(SAA)是对照组的3.6倍,而当ρ(Fe2+)为20 mg·L-1时,AnAOB活性受到明显抑制.高通量测序结果显示,投加Fe2+均促进了反应器中Candidatus_Kuenenia丰度的增加,其中ρ(Fe2+)为10 mg·L-1时两个反应器中Candidatus_Kuenenia的相对丰度分别增至16.18%和4.22%.基于Fe2+促进下两级厌氧氨氧化的稳定运行为厌氧氨氧化生物膜工艺处理低总氮浓度废水提供了参考.  相似文献   

4.
盐度条件下ANAMMOX-EGSB反应器颗粒污泥微生物群落   总被引:3,自引:2,他引:1  
王晗  李瀚翔  陈猷鹏  郭劲松  晏鹏  方芳 《环境科学》2019,40(4):1906-1913
采用高通量测序技术探究了0、15和30 g·L-1盐度条件下稳定运行ANAMMOX-EGSB反应器中颗粒污泥的微生物群落变化.结果发现,进水盐度提升至15 g·L-1及30 g·L-1后,反应器脱氮性能呈现小幅下降,随运行时间延长脱氮性能均可恢复.反应器性能稳定后,3种盐度条件下厌氧氨氧化菌的丰度依次为10.33%、20.90%和35.87%,其中Candidatus Kuenenia属为优势属.浮霉状菌门、变形菌门、绿弯菌门丰度占总体比例较高且累计丰度超过了80%,为反应器的优势菌门.盐度条件下,浮霉状菌门丰度增加,变形菌门丰度降低,绿弯菌门丰度相对稳定.电镜扫描显示盐度条件下颗粒污泥表面有大量丝状菌和胞外聚合物.盐度条件下反硝化菌丰度提高,增强了反硝化协同脱氮,绿弯菌门和拟杆菌门微生物丰度的提高有利于维持颗粒污泥结构稳定,好氧微生物及反硝化菌的存在也有利于维持反应器内部厌氧水平.这些结果表明,厌氧氨氧化菌经驯化可适应盐度,盐度条件下伴生菌对厌氧氨氧化菌功能的发挥提供了支撑.  相似文献   

5.
于德爽  吴国栋  李津  周同  王骁静 《环境科学》2018,39(4):1688-1696
废水因含盐量高而导致其生物处理效率降低,对于如何提高高盐环境下的生物处理效率已成为目前的研究热点.采用厌氧氨氧化工艺处理高盐废水,以不同甜菜碱浓度对厌氧氨氧化脱氮效能为研究对象,探讨了甜菜碱对厌氧氨氧化脱氮效能的影响.结果表明:①投加甜菜碱对系统脱氮效能有明显的改善作用,甜菜碱浓度为0.1~0.4 mmol·L-1时,添加甜菜碱缓解了盐胁迫对厌氧氨氧化菌生长的抑制,也促进了反硝化菌的生长;甜菜碱浓度为0.4~0.5 mmol·L-1时,推测反硝化菌为优势菌群,但对总氮去除表现为促进作用.甜菜碱浓度大于0.5 mmol·L-1后,添加甜菜碱已无法缓解盐胁迫对反应器脱氮效能的抑制,最终在甜菜碱浓度0.8 mmol·L-1时对反应器产生完全抑制.②甜菜碱的添加浓度为0.3 mmol·L-1时,反应去除效能达到最佳,NH4+-N和NO2--N分别提升了16%和32%,NRR提升了26.8%.③在最后的恢复试验中,随着甜菜碱浓度的降低反应器脱氮效能得到快速恢复,NH4+-N恢复到50.6%,NO2--N平均去除率为63.7%,NRR恢复到0.65 kg·(m3·d)-1,这说明甜菜碱对反应器的影响是可逆的.  相似文献   

6.
王丝可  于恒  左剑恶 《环境科学》2020,41(11):5082-5088
污水生物脱氮工艺中通常会释放温室气体N2O,厌氧氨氧化工艺作为新型生物脱氮工艺,其N2O的释放规律及机制值得深入研究.本文利用厌氧氨氧化序批试验,研究了不同温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响,并探讨了N2O释放的微生物机制.结果表明,厌氧氨氧化工艺中进水基质浓度的增加会促进N2O释放,在35℃条件下,当进水亚硝氮从40 mg ·L-1增加至60 mg ·L-1和120 mg ·L-1时,N2O最高积累浓度从0.5 mg ·L-1增加至1.5 mg ·L-1和2.4 mg ·L-1,分别占总氮去除量的0.85%、1.43%和1.11%.温度降低对厌氧氨氧化活性抑制作用明显,15℃下的比厌氧氨氧化活性仅为30℃时的6%.温度降低导致厌氧氨氧化工艺中N2O的释放减少,温度降低时反硝化速率的降低是导致N2O产生速率降低、N2O积累减少的主要原因.厌氧氨氧化工艺微生物群落中存在丰富的异养反硝化菌,工艺中N2O积累主要是反硝化菌产生和消耗N2O的结果.  相似文献   

7.
针对现有城市污水处理厂普遍面临进水碳源不足影响脱氮效率的问题,通过调控A2/O系统曝气分区比例、溶解氧(DO)浓度和污泥龄(SRT)构建短程硝化耦合厌氧氨氧化系统,以研究不同工况下该系统的脱氮性能、脱氮途径和微生物种群结构的变化情况.研究结果表明在低C/N进水(C/N=5)情况下,该系统具有稳定优良的脱氮性能.在140 d试验过程中,反应器经历了氨氧化细菌(AOB)、亚硝酸盐氧化细菌(NOB)共培养阶段(阶段Ⅰ)、AOB筛分阶段(阶段Ⅱ~Ⅲ)与厌氧氨氧化细菌(AnAOB)富集阶段(阶段Ⅳ),系统的脱氮途径也由初始的全程硝化反硝化逐步转化为短程硝化耦合厌氧氨氧化脱氮;系统的脱氮效率在阶段Ⅳ达到最佳状态,此时该系统出水NH4+-N和TN的平均浓度分别为1.20 mg·L-1和7.03mg·L-1,其对应的去除率分别为97.69%和87.83%;Illumina MiSeq测序结果表明,短程硝化耦合厌氧氨氧化的系统中NitrosomonasNitrosospira这两类AOB的富集和Nitrospira、NitrococcusNitrobacter这3类NOB的淘洗是系统发生短程硝化的主要原因,Candidatus KueneniaCandidatus Jettenia这两类AnAOB的富集是系统发生厌氧氨氧化的关键所在,对实现深度脱氮具有重要作用.  相似文献   

8.
生物膜系统中部分反硝化实现特性   总被引:1,自引:0,他引:1  
以移动床生物膜反应器(moving-bed biofilm reactor,MBBR)为例,考察生物膜系统中部分反硝化NO2--N积累特性,并通过耦合厌氧氨氧化验证生物膜系统中部分反硝化耦合厌氧氨氧化(partial denitrification with anaerobic ammonium oxidation,PD+ANAMMOX)工艺的可行性.结果表明,在C/N为3.0,填充率为20%的条件下,经过40 d的富集培养,实现部分反硝化,NO2--N积累率达(69.38±3.53)%;接种生物膜NO3--N还原酶(nitrate reductase,NAR)活性为0.03 μmol·(min·mg)-1,NO2--N还原酶(nitrite reductase,NIR)活性为0.18 μmol·(min·mg)-1,富集培养后生物膜NAR活性增至0.45 μmol·(min·mg)-1,NIR活性降至0.02 μmol·(min·mg)-1,从酶学角度验证了部分反硝化实现;高通量测序结果显示,Thauera属从0.3%增加至37.27%,在微生物群落中占主导地位,该菌属被认为是部分反硝化过程的主要功能菌.随后与厌氧氨氧化耦合,出水总氮达(6.41±1.50) mg·L-1,总氮去除率达(88.16±2.71)%,证明了生物膜系统中PD+ANAMMOX的可行性及稳定性.  相似文献   

9.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

10.
基于硫自养反硝化作用,寻求一种经济、快速、高效地污水脱氮工艺,采用硫磺/硫铁矿组合进行自养反硝化脱氮试验,以低C/N市政污水为处理对象,分别考察温度,硫磺与硫铁矿体积比和HRT等理化因素对反应器脱氮性能的影响.结果表明,在进水TN质量浓度约40 mg·L-1条件下,1号反应器最佳HRT为2.5 h,TN去除率平均稳定在72.2%,出水TN约10.55 mg·L-1;2号反应器最佳HRT为3.5 h,TN平均去除率约67.8%,出水TN平均稳定至12.90 mg·L-1;3号反应器最佳HRT为3.5 h,TN平均去除率60.6%,出水TN稳定在15.00 mg·L-1左右.硫磺/硫铁矿自养反硝化系统比硫铁矿自养反硝化系统启动快;该系统脱氮效率随着硫磺与硫铁矿体积比减小而降低;该系统脱氮性能对温度的变化并不敏感,脱氮性能优于单独以硫铁矿为硫源的自养反硝化系统;系统中硫自养反硝化过程的主要功能菌属是SulfurimonasThiobacillus,在3个反应器所占比例为1号 > 2号 > 3号.  相似文献   

11.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

12.
移动床生物膜反应器净化模拟水产养殖废水的研究   总被引:1,自引:0,他引:1  
采用移动床生物膜反应器(MBBR)净化模拟水产养殖废水.结果表明,MBBR净化模拟水产养殖废水效果良好.在水力停留时间(HRT)为8 h,DO为2.0~3.0 mg·L-1的条件下,反应器启动迅速、运行稳定,能使COD和氨氮去除率均达到80%以上,TP去除率达到50%左右;有机负荷为(0.76±0.03)kg·m-3·d-1时,TN及氨氮去除效果最好,去除率分别达到71.73%及98.42%.为达到良好的TN去除效果,有机负荷不宜低于0.5 kg·m-3·d-1;DO为(3.00±0.25)mg·L-1时,TN去除效果最好,最有利于同步硝化反硝化;为保持较高的氨氮去除效率,并减少亚硝态氮积累,DO浓度不应低于2.0 mg·L-1;HRT过短会使氨氮去除效率降低,且可能出现亚硝态氮积累;采用序批式进水运行方式,对TP的去除效果优于连续进水方式,但运行周期后半段会出现亚硝态氮积累,对鱼类产生危害.  相似文献   

13.
试验研究了阶段式负荷提高法对高浓度基质抑制后反应器中厌氧氨氧化(Anammox)菌的活性恢复特性的影响,考察了活性恢复过程反应器各阶段的脱氮性能、胞外聚合物(EPS)组分及Anammox菌丰度的变化.结果表明,通过逐步提高氮负荷率,反应器中Anammox菌活性于57d内即可恢复至受损前状态,最终氮去除负荷达2.21 kg·m-3·d-1;Anammox泥中的EPS含量、紧密型EPS和松散型EPS中蛋白质与多糖的比例均呈现先降低后上升的趋势,当进水总氮(TN)为500 mg·L-1时,EPS含量及二者的比例均最低;Anammox菌丰度对废水中氮浓度的敏感度较高,在活性恢复过程中,TN浓度为700 mg·L-1时丰度最高,达2.4×1010copies·g-1VSS.  相似文献   

14.
针对印染工业园生化尾水中生物难降解的有机氮难题,采用O3-SBBR(臭氧-序批式生物膜反应器)联合工艺进行深度处理.开展了影响因素实验、降解动力学和淬灭实验,测定了自由基种类、琥珀酸脱氢酶活性和脱氮功能基因.结果表明,适宜的臭氧氧化条件:pH为8.0~8.5、ρ(O3)为35.0 mg·L-1左右、 O3投加量(以O3/H2O计,下同)约为100.0 mg·L-1和反应时间为90.0~120.0 min.臭氧氧化生化尾水的有机氮符合拟一级动力学模型,最大速率常数k值为0.010 35 min-1[实验条件:pH为8.0、 O3投加量为150.0 mg·L-1和ρ(O3)为35.0 mg·L-1].臭氧氧化显著提高序批式生物膜反应器(SBBR)的脱氮性能,脱氮效率从19.8%(SBBR)提高到32.9%(O3  相似文献   

15.
为了解同步硝化内源反硝化系统(SNEDPR)脱氮除磷性能,采用延时厌氧(180 min)/低氧(溶解氧0. 5~2. 0 mg·L~(-1))运行的SBR反应器,以人工配置的模拟废水为处理对象,先采用恒定进水C/N(为10),以实现SNEDPR的启动和聚磷菌(PAOs)的富集培养,再调控进水C/N值(分别为10、7. 5、5和2. 5),考察不同C/N对系统的脱氮除磷性能的影响.结果表明,当进水C/N为10,可实现SNEDPR的启动与深度脱氮除磷,出水PO3-4-P和总氮(TN)浓度分别平均为0. 1 mg·L~(-1)和8. 1mg·L~(-1),PO3-4-P去除率、TN去除率和SNED率平均值分别为99. 79%、89. 38%和58. 0%.当进水C/N由5提高至10时,系统维持良好的脱氮除磷性能,释磷量(PRA)和SNED率分别由16. 0 mg·L~(-1)和48. 0%提高至24. 4 mg·L~(-1)和69. 2%;当C/N为10时,TN和PO3-4-P去除率最高达94. 5%和100%;当C/N为2. 5时,系统失去脱氮、除磷性能,PRA和SNED率仅为1. 36 mg·L~(-1)和10%.在系统稳定运行阶段(C/N为10、7. 5和5),SNED率达85. 9%,出水NH_4~+-N、NO-x-N和PO3-4-P浓度平均为0、8. 1和0. 1 mg·L~(-1).  相似文献   

16.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

17.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

18.
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2018,39(11):5074-5080
在污水处理厂室外,以A/O除磷工艺出水为基质,启动全程自养脱氮(CANON)生物滤柱反应器.反应器启动成功后,进水中投加葡萄糖作为有机碳源,启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)工艺,研究SNAD生物滤柱处理城市生活污水的效果.结果表明,第119~128 d,CANON工艺氨氮去除率大于95%,最大出水总氮浓度为13. 0 mg·L~(-1),超过了北京市地标一级A排放标准.第129 d在进水中投加葡萄糖30 mg·L~(-1)启动SNAD工艺,第133~187 d时SNAD工艺总氮去除率在85%左右,出水总氮浓度为5. 5~7. 3 mg·L~(-1).第195d观察到滤柱出现堵塞现象,在第196 d对反应器进行反冲洗,反冲洗后的30d期间,反应器总氮去除率大于85%,出水总氮浓度维持在6. 2~7. 2 mg·L~(-1).与CANON工艺相比,SNAD工艺提高了总氮去除率,将出水总氮浓度降低了6 mg·L~(-1),使出水氨氮和总氮浓度达到北京市地标一级A标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号