首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
郜红建  蒋新  王芳  卞永荣 《环境科学》2008,29(7):2054-2057
用室内模拟试验的方法研究了老化作用对六六六在土壤中可提取态含量变化及其在蚯蚓(Eisenia foetida)体内的生物富集规律.结果表明,六六六在土壤中的可提取态含量随着时间延长逐渐降低,下降速率呈现初始较快、而后减慢的趋势.在开始60 d老化时间内,α-六六六、β-六六六、γ-六六六和δ-六六六在土壤中的老化减少量是其初始添加量的57.2%、50%、52.2%和43.2%,分别是其在180 d内老化减少量的90.5%、87.4%、72.4%和84.4%.六六六在蚯蚓体内的生物富集量和生物富集系数也表现出和老化相似的规律.不同老化时间内,六六六在蚯蚓体内的生物富集量表现为α-六六六>β-六六六>δ-六六六>γ-六六六.生物富集系数在开始的15 d为γ-六六六>α-六六六>β-六六六>δ-六六六;而后呈α-六六六>β-六六六>acillus cereus efficiently debγ-rominated and degrade-六六六>δ-六六六的规律.老化使六六六在土壤中的可提取态含量和生物有效性降低,但仍可以在蚯蚓体内有一定的生物富集,对土壤生态安全的威胁依然存在.  相似文献   

2.
土壤及作物中农药残留量所揭示的问题   总被引:10,自引:0,他引:10       下载免费PDF全文
1991、1992年在河南、河北等省施用林丹防治小麦害虫地区跟踪监测:林丹在小麦及土壤中的残留量全部符合标准。土壤及小麦中残留量中位数分别为50.8μg/kg和11.9μg/kg.土壤中滴滴涕残留量偏高,是由于防治红蜘蛛时施用三氯杀螨醇,而三氯杀螨醇原药中含有滴滴涕所致。   相似文献   

3.
通过不同施药方法,探讨了林丹在小麦、玉米中的残留水平。结果表明,林丹在作物中的残留量随施药量的增加而递增。采用喷雾,4(a.i.)g/亩,林丹在小麦中的残留为0.0073ppm;土壤处理,100(a.i.)g/亩,林丹在小麦中的残留为0.0134ppm;撒颗粒剂,0.015(a.i.)g/株,林丹在玉米中的残留为0.0600ppm.林丹在土壤中消解很快,当土壤处理[200(a.i.)g/亩],林丹在土壤中的半衰期为23.7~25.2d,消解99%需160d左右。作者认为,在我国部分害虫防治中起用林丹不可能对生态环境构成威胁。   相似文献   

4.
某林丹生产企业搬迁遗留场地土壤中六六六的残留特征   总被引:4,自引:0,他引:4  
潘峰  王利利  赵浩  尤奇中  刘林 《环境科学》2013,34(2):705-711
为了解有机氯农药生产企业搬迁遗留场地土壤的污染状况,于2010年11月对原新乡市某林丹生产企业搬迁遗留场地进行了调研,采用索氏提取-气相色谱-电子捕获检测器(SE-GC-ECD)法对其污染土壤中六六六(HCH)进行分析检测.结果表明,在所有采样点位中,六六六的4种异构体的检出率均为100%.0~20 cm表层土壤中六六六的浓度变化具有波动性,总残留量(ΣHCH)范围在0.034 3~19.560 8 mg·kg-1;前后院中心0~80 cm垂向土壤中六六六浓度随土壤深度的增加呈现先增加后减小的趋势,总残留量(ΣHCH)范围在0.031 3~0.294 7 mg·kg-1.通过对污染物的组成分析发现,4种异构体的含量顺序符合β-HCH>δ-HCH>γ-HCH>α-HCH,β-HCH异构体的平均含量在50%左右,远远高于其它异构体的含量,表明该场地并没有新的六六六输入.采用《土壤环境质量标准(GB 15618-1995)》对污染场地土壤残留六六六进行风险评价,结果表明,经过十几年的降解,大部分采样点位六六六的污染浓度(67.9%)低于土壤环境质量二级标准0.5 mg·kg-1,处于安全级别,厂区后院西部及东部靠近生产车间的土壤污染仍较为严重,超出土壤环境质量三级标准(1.0 mg·kg-1)1.5~20倍,存在较大的安全隐患和风险.  相似文献   

5.
由于滴滴涕、六六六等有机氯农药在环境中的高残留性,曾经倾向用林丹来代替。现在我国已经禁用滴滴涕和六六六。因此,研究在我国自然条件下林丹在环境中的残留、消解及其影响因素就具有相当的意义。林丹进入土壤后,其消失的主要途径是挥发扩散和降解,而土壤温度和土壤容重既影响林丹在土壤中的扩散,也影响降解林丹的土壤微  相似文献   

6.
小麦根系吸收土壤中的~(14)C-辛硫磷,经茎转运到植株地上各部分,累积在小麦叶片中的~(14)C-辛硫磷残留物再通过蒸腾、代谢和光解等途径不断转移和消解,或以~(14)CO_2,或以其它含~(14)C-化合物形式向体外逸出,经过整个生育期(90天)的转移和消解,麦收后土壤中仍有少量~(14)C-辛硫磷残留物,这些残留物或以含~(14)C土壤蒸发液形式、或由土壤微生物作用分解成~(14)CO_2逸出土壤。  相似文献   

7.
甲磺隆在土壤腐殖物质中结合残留的动态变化   总被引:7,自引:1,他引:7       下载免费PDF全文
土壤中14 C 甲磺隆的可提取态残留物随时间延长不断降低 ,而其结合态残留率第 2 8天达最高 .14 C 甲磺隆结合态残留物在土壤腐殖物质中的分布是 :富啡酸 胡敏素 >胡敏酸 .在处理最初 2 8天 ,富啡酸中14 C 甲磺隆结合态残留物不断增大 ,随后减少 ;胡敏素中的结合态残留量在 2 8— 2 2 4天变化不大 .14 C残留物在不同土壤之间的结合及其分布都是有差异的 ,与土壤pH值、粘粒矿物类型等都有密切关系  相似文献   

8.
冯璞阳  李哲  者渝芸  黄杰  梁东丽 《环境科学》2016,37(8):3160-3168
硒在土壤中的环境化学行为及其生物有效性在很大程度受到吸附解吸作用的影响,土壤对硒的吸附解吸因为土壤理化性质的不同差异很大.本文采用批量吸附实验,选择土壤性质差异较大的我国18种农田土壤,探讨了土壤p H、无定形铁铝氧化物、有机质和机械组成等对SeO_4~(2-)吸附的影响.结果表明,18种土壤对SeO_4~(2-)的吸附均是一个先快后慢的过程,在24 h达到吸附平衡;二级动力学方程为描述SeO_4~(2-)吸附的最佳模型(R20.976),18种土壤对SeO_4~(2-)吸附大多符合Freundlich模型(R20.842);土壤对SeO_4~(2-)吸附量与p H值(P0.01)、碳酸盐含量(P0.05)呈显著负相关,而与无定型铁、铝含量(P0.01)及有机质含量(P0.05)呈正相关;18种土壤对SeO_4~(2-)吸附的固液分配系数(Kd值)均很低(0.99~18.18 L·kg~(-1));土壤SeO_4~(2-)解吸率均大于80%,表明吸附是可逆的;土壤吸附SeO_4~(2-)的低Kd值和高解吸率反映了硒酸盐易迁移淋溶的特性,这应当在区域环境硒的评价和调控中受到关注.  相似文献   

9.
小麦对134Cs吸收的研究   总被引:1,自引:0,他引:1  
本文介绍小麦对~(134)Cs的吸收试验,结果表明,~(134)Cs在小麦中的比活度,根中最高,麦杆次之,麦粒最低。麸皮中~(137)Cs的比活度高于面粉。土壤对~(134)Cs的吸附能力,以青紫泥最强,红壤次之,小粉土最弱;土壤对~(134)Cs吸附能力的强弱与土壤的质地、PH和有机质含量有关。随着~(134)Cs施入土壤的延迟和施人次数的增加,小麦对~(134)Cs的吸收也增加。~(134)Cs在土壤中迁移很少,90.4%集中在0—3cm的表土层;~(134)Cs在土壤-小麦中的分配比为97.9%:2.1%;小麦对土壤中~(134)Cs的富集系数为1.75。  相似文献   

10.
采取室内模拟试验方法,研究了滴滴涕(DDT)在武汉地区三种不同土质类型土壤中的吸附和迁移特征。结果表明:DDT在A、B、C三种土壤中的吸附符合线性吸附方程,在24h左右达到平衡,吸附过程为自发的物理吸附,Kd值在0.3~1.41mL/g之间,Kd值大小顺序依次为A种土〉B种土〉C种土;土柱淋溶试验表明一周后DDT在A种土、B种土和C种土中最大迁移深度分别为11.0cm、13.2cm、15.4cm;影响DDT在土壤中吸附的重要因素之一是土壤中有机质含量;土壤中的DDT对地下水污染存在潜在的风险性,应引起高度重视。  相似文献   

11.
重金属污染土壤改良是通过添加土壤改良剂,降低重金属元素在土壤中的活性和生物有效性,从而达到阻断重金属元素在生物链系统的传递和危害的目的。综述了土壤理化性质与土壤重金属形态、活性之间的关系,深入讨论了黏土矿物、有机质、土壤质地、pH及氧化还原电位对重金属污染土壤改良修复的影响,认为土壤理化性质是影响重金属在土壤中迁移性、可给性、活性等的重要因素,与污染土壤修复密切相关。  相似文献   

12.
运用主成分分析选取土壤肥力变异因子。三个主成分的累积贡献率达85.21%,分别命名为:有机质因子、酸碱度因子、质地因子。将各样品的主成分因子得分作为自变量.土壤微量元素含量作为因变量,进行逐步回归分析,得到回归方程。根据方程的回归系数大小可以评价各肥力变异因子对土壤微量元素累积和迁移的作用大小。  相似文献   

13.
以受重金属、多环芳烃复合污染的工业遗留场地为修复对象,运用多级筛分式淋洗设备对复合污染土壤进行工程化实施,综合考虑场地污染土壤理化性质、污染物分布规律与污染物存在形态等因素,对污染土壤进行7级筛分和淋洗。运行结果表明:该设备操作简单、处理效率高、运行费用低,淋洗出料可达到修复标准,处理达标的石块和砾石可用于场地回填;砂砾、粗砂、中粗砂和细砂可作为建筑材料;仅有泥饼需要进行后续固化稳定化处理。该设备实现了我国自主研发土壤修复淋洗技术装备在应用层面从无到有的突破。  相似文献   

14.
红树林及其土壤   总被引:14,自引:0,他引:14  
红树林及红树林潮滩盐土广泛分布在世界低纬度海岸地区,是热带、亚热带的一种特殊自然资源,在生产和科研上都具有重要的意义。国内外许多学者从地植物学或土壤学科方面作过不少调查研究和报道。由于红树林及其土壤是热带、亚热带海岸特殊景观的主要组成部分,彼此间有着密切的相关性,尤其在红树植物生态、生理特征和土壤基本特性等方面。本文是在近几年广东省海涂土壤资源调查基础上进行一些探讨,为保护、发展我省红树林资源,及合理利用其土壤资源提供一些科学依据。  相似文献   

15.
土壤对酸沉降的缓冲能力与土壤矿物的风化特征   总被引:30,自引:0,他引:30       下载免费PDF全文
在土壤的模拟酸雨淋溶实验基础上,对不同地区不同层次土壤的缓冲能力进行了探讨;用硅作为指示性元素,研究了酸沉降作用下土壤矿物的风化特征;根据实验结果,对土壤中存在的两个缓冲体系进行了讨论。  相似文献   

16.
本文结合了国内外研究成果,概述了石油污染土壤的现状,分析了生物修复石油污染土壤的环境影响因子,如:pH值、温度、水分、土壤质地等,并对这一治理方法在我国的发展前景进行了展望,为今后这方面的研究提供建议。  相似文献   

17.
南方红壤地区水稻土的肥力评价   总被引:6,自引:0,他引:6  
本文在系统分析土壤肥力结构的基础上,运用模糊隶属函数及主成分分析的原理和方法生成了反映水稻土肥力状况的综合肥力指数(IFI),以此对江西省临川县43个水稻土种(属)的肥力状况进行了分析与评价,划分了水稻土的肥力等级,并考察了不同肥力级别水稻土各肥力指标的状况。  相似文献   

18.
传统淋洗技术针对黏性重金属污染土壤修复效率偏低,因此可将污染土壤进行分级减量化,以提高淋洗效率。通过研发一种土壤的高效分级系统,使得土壤颗粒实现快速筛分,以提高土壤污染淋洗修复的工作效率。该系统利用过滤分离原理,通过泵的主动加压和筛网表面的旋转,使得堆积在筛网表面的颗粒受到离心力、重力以及液体剪切力的作用,固液体系充分扰动,极大地降低土壤颗粒在筛网表面的架桥堆积现象,强化筛分过程,将土壤水溶液中的大小颗粒按目标粒径进行高效分级。通过多级粒径的实际验证(250~35μm)可知:与常规气流分离系统相比,该系统筛分速率明显提升,筛分效率和收率均可得到保证,能很好地达到土壤粒径分级的目的。此外,基于该筛分系统进行分级淋洗实验,粒径分级后需淋洗修复的土壤质量减少20%左右,并确定EDTA淋洗Pb污染土壤的最优工艺参数为淋洗液浓度为0.01~0.05 mol/L,pH=7,淋洗时间为10 h。  相似文献   

19.
于政  李杰  姜楠  刘政妍  彭邦发  吴彦 《环境工程》2021,39(12):212-219
介绍了淋土式介质阻挡放电等离子体修复阿特拉津污染土壤的方法,探究了土壤特性及等离子体发生参数对阿特拉津降解效果的影响并对中间产物进行检测与分析。结果表明:增加电压和频率有利于提高阿特拉津降解率,降低能量效率;增加初始浓度会导致降解率下降,能量效率上升;而增加土壤粒径或降低pH则导致降解率和能量效率下降;含水率增加使得降解率和能量效率先增后减。在峰-峰值36 kV,电源频率为200 Hz, pH=7.03条件下,60~80目的10 mg/kg阿特拉津污染干土经过50 s放电后阿特拉津降解率为70.95%,能量效率为0.014 mg/kJ。利用液相色谱质谱联用对中间产物进行测定,发现产物主要为脱烷基、脱氯和酮或醛等类阿特拉津产物,未检测到低聚物的生成。由于低温等离子体在土壤颗粒周围产生,使得臭氧和·OH等短寿命活性物种共同参与污染物降解过程,使得反应器降解效果得到增强。  相似文献   

20.
以东北地区黏土为研究对象,配置模拟污染土,通过实验室小试探究抽提速率、土壤含水率以及热强化作用对气相抽提修复苯污染土壤的影响,同时探究了不同含水率土壤在中心热源加热条件下的传热效果和土壤温度变化规律。结果表明:1)气相抽提修复苯污染东北黏土的最佳抽提速率为10 L/min;2)黏土土壤含水率为5%~20%时,气相抽提修复效果随着含水率升高而逐渐降低;但在热强化作用下,其修复效果随含水率增加呈先下降后升高趋势,且修复效果在含水率为5%时最佳;3)在中心热源加热条件下,黏土在含水率为5%时传热效果最好,土壤温度由热源中心沿径向呈非线性衰减,越靠近热源点附近衰减越明显;4)热强化气相抽提修复苯污染黏土时,中心热源温度为160 ℃时修复效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号