首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
本文应用WRF-CHEM模式模拟分析了关中地区2014年2月14日至16日的一次重污染过程。模式模拟了西安地区和宝鸡地区城市大气PM_(2.5)的时间变化和空间分布特征,较好地再现了污染过程。敏感性试验分析表明,关中盆地东部地区(西安市及其周边地区)形成的PM_(2.5)对盆地西部地区(宝鸡市及其周边地区)影响较大,贡献可以达到30%,其主要原因为盆地发生重污染时,盛行东风造成西安市及其周边地区形成的污染物向西输送,影响宝鸡市的空气质量。污染源分析表明,居民生活源是关中盆地在2月份最重要的PM_(2.5)源,贡献超过40%,交通运输源的贡献小于10%。因此在重霾情况下,限行机动车的作用很小。  相似文献   

2.
2013年6月23~24日南京及其周边地区发生了一次小范围、突发性的气溶胶污染事件,PM_(2.5)的平均浓度达到242μg/m3,在夏季比较少见.本文利用WRF-chem模式对该PM_(2.5)污染事件进行模拟,通过对模式结果进行分析表明:此次污染事件与天气形势和边界层结构有着直接联系.此次污染发生时江淮地区正处于梅雨时节,南京及其周边地区处于江淮低空切变线上,切变线附近有辐合的流场,东部上游排放源的贡献和南京本地的静稳风场导致污染物在南京堆积.污染期间有比平时更强的气粒转化过程,23日PM_(2.5)浓度受到SO2减半的影响,浓度减少量为9.8%,受NOx减半影响的减少量为7.3%.污染发生期间南京地区上空温度垂直梯度较小,温度层结不利于污染物的垂直扩散,边界层高度较低,低层大气湍流活动较弱,垂直高度上的稳定层结也为污染物集聚提供了条件.  相似文献   

3.
在建立成都市大气污染物排放清单的基础上,采用源开关敏感性分析法,设置8个排放情景,基于WRF-CMAQ模型模拟分析了2015年1、4、7和10月这4个典型代表月份的大气污染传输和不同行业对成都市PM_(2.5)污染贡献.结果表明成都市PM_(2.5)污染较重,特别是1月达到130μg·m~(-3)以上;浓度的高值集中在中心城区,且与周边城市PM_(2.5)污染连接成片.由于气团比较稳定,大气污染物的区域传输能力较弱,成都市PM_(2.5)污染以本地源的贡献为主,占比为61%.从行业贡献来看,移动源、扬尘源和生活源对成都市PM_(2.5)年均浓度贡献率分别为29%、26%和24%,是影响PM_(2.5)污染的主要污染源,下一步应强化对这3类源的污染控制.  相似文献   

4.
京津冀区域PM2.5污染相互输送特征   总被引:2,自引:1,他引:1  
王燕丽  薛文博  雷宇  王金南  武卫玲 《环境科学》2017,38(12):4897-4904
基于CAMx-PSAT空气质量模型,对2015年京津冀区域PM_(2.5)污染及相互输送特征进行定量模拟,建立了京津冀13个城市的PM_(2.5)传输矩阵.结果表明,在年均尺度上京津冀区域PM_(2.5)以本地污染源贡献为主(21.49%~68.74%),传输贡献为辅,其中区域内传输贡献约为13.31%~54.62%,区外贡献约为13.32%~45.02%.PM_(2.5)传输特征呈现显著的时空差异性,区域中部城市唐山、北京、天津、保定和石家庄PM_(2.5)受本地贡献主导,在冬季尤其明显,而受传输影响较大的城市多分布在区域边界且在南部集中.区内作为汇的城市有廊坊、衡水、承德、秦皇岛和邢台,作为源的城市有天津、沧州、唐山、北京、石家庄和邯郸,张家口和保定对区内城市输出和受区内输入基本持平.典型城市分析证明城市间PM_(2.5)污染交互影响,北京与廊坊、保定、承德、天津和沧州等城市之间,天津与廊坊、唐山、北京、沧州和保定等城市之间,石家庄与邢台、衡水、保定、邯郸和廊坊之间均存在显著的PM_(2.5)相互输送.  相似文献   

5.
基于曲面响应建模的PM2.5可控人为源贡献解析   总被引:1,自引:0,他引:1  
以东莞市PM_(2.5)重污染月份为例,使用强力法(Brute Force)和RSM/CMAQ曲面响应模型法分别解析了珠三角地区人为源排放对东莞PM_(2.5)的贡献,以及区域传输的可控人为源SO_2、NO_x和一次颗粒物(PM)在不同控制比例下(25%、50%、75%和100%)对东莞PM_(2.5)的累积浓度贡献.强力法研究结果表明,2014年1月珠三角地区人为源二次转化对东莞市PM_(2.5)的贡献(约58.10%)大于一次PM排放贡献(约41.90%),其中,人为源NH_3排放贡献最大,约占总量的21.66%.RSM/CMAQ动态源贡献结果显示,东莞市PM_(2.5)的人为可控源排放贡献(SO_2、NO_x和一次PM)占比为82.17%,受本地排放影响较大,且叠加区域排放的影响;一次PM减排对PM_(2.5)环境浓度的贡献高于仅减排SO_2和NO_x.在减排比例较低时,一次PM减排可有效削减东莞市PM_(2.5)浓度;随控制比例加大,二次前体物(SO_2和NO_x)减排对东莞市PM_(2.5)浓度削减率的影响加大.进一步使用HYSPLIT模式和轨迹聚类分析方法研究了2014年1月东莞市PM_(2.5)污染传输过程.结果显示,该时段共有6条长、短距离污染传输路径,污染物主要来自东莞市东、东北及东南方向,途经其上风向区域(惠州、深圳和广州等)传输至东莞;惠州是各主导上风向出现频率最高的城市,因而其区域传输对东莞PM_(2.5)的贡献也较大,深圳次之.  相似文献   

6.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2       下载免费PDF全文
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

7.
利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气流输送的存在为北京地区PM_(2.5)形成提供了有利条件,NAQPMS模式能够合理的再现北京大气污染物时空变化,细颗粒物PM_(2.5)和可吸入颗粒物PM_(10)模拟与观测数据相关系数达0.71,模拟数据在观测数据两倍范围内占比(FAC2)达65%.源解析结果表明,在不考虑临时实施减控措施下,11月18日区域外输送对北京PM_(2.5)浓度贡献为55.25%,区域内输送贡献为44.75%,北京东北区域PM_(2.5)外地源主要为河北中部、河北南部、天津和山东,所占贡献为9.67%、9.01%、7.90%和7.99%.污染物主要来源为生活源、交通源和工业源,分别占比39.6%、34.6%和20.0%.而实际上北京在唐山、保定采取一系列控制措施后仍在研究时段内出现高PM_(2.5)浓度,意味着在同样天气形势下需要对河北中部、河北南部、天津和山东等浓度贡献占比大的城市加强减排管控才能有效减缓高PM_(2.5)浓度的出现.  相似文献   

8.
基于CAMx的徐州市2016年冬季PM2.5污染过程及来源分析   总被引:1,自引:0,他引:1  
徐州地处江苏西北部、华北平原的东南部,为内陆资源型工业城市,近几年来环境监测数据显示,徐州地区大气复合污染问题日益突出,准确模拟大气污染物状况及来源对于空气污染的防治十分关键.2016年1月,徐州市出现了多次持续的重污染天气,研究中以此次污染事件为例,首先基于WRF-CAMx空气质量模型系统对这次细颗粒物污染过程进行全面的模拟与分析,其次利用CAMx-PSAT系统模拟和分析本次污染的区域传输过程.研究结果显示:此次细颗粒物污染中,PM2.5组成成分以硫酸盐、元素碳、硝酸盐和铵盐为主,分别占月平均浓度的29%、15%、14%、14%;PM2.5的区域传输贡献中,长距离传输所占比重最大,月平均贡献率达46%,其次为本地源排放,平均贡献率为39%;重污染天气期间,PM2.5污染主要从西北方向输入,此时长距离传输的影响明显增大.  相似文献   

9.
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ~(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m~(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m~(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ~(13)CTC值范围是-26.56‰~-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.  相似文献   

10.
2018年11月底—12月初南京及周边地区发生一次大范围持续性霾污染,利用南京市空气质量监测资料、颗粒物成分逐时观测资料、南京站探空资料等,结合天气学诊断分析、后向轨迹模拟和聚类分析等方法,分析此次重霾事件的污染特征和气象因素.结果表明,此次重霾事件具有峰值浓度高、持续时间长、波动较明显等特点.污染时段PM2.5浓度变化分为3个阶段,平均浓度为114.7 μg·m-3,整体达到中度污染.重霾期间南京市大气环境处于富氨条件,颗粒物整体偏酸性,移动源排放比重高于固定源,PM2.5主要成分的存在形式为硫酸铵、硝酸铵和其他硝酸盐.本次重霾事件中气象条件对污染物的输送和累积影响显著,在PM2.5浓度极端事件发生期间,均有各气象要素与PM2.5浓度同步变化.高PM2.5浓度与对流层低层增暖增湿、弱的西南风相对应.重霾事件的主要天气成因是冬季东部地区出现大面积稳定且持久的均压场,南京及周边地区近地面中高层污染物主要由西北和华北地区输送而来,低层污染物主要来自于本地源排放累积.动力条件和热力条件的相互配合,近地面受高压影响形成暖平流逆温层,且易形成下沉气流,使重霾天气持续发展.  相似文献   

11.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

12.
河南省冬季3次重污染过程的数值模拟及输送特征分析   总被引:1,自引:0,他引:1  
利用WRF-Chem模式模拟2015年11月27日—12月1日、12月5—14日、12月19—25日河南3次重污染过程,结合空气污染资料和ERA-Interim再分析资料,对比分析了这3次重污染过程的开始、持续和结束及污染物的输送特征.结果表明,静稳天气有利于污染的发展持续,3次重污染过程的结束均是由西路冷空气入侵造成的.第1次重污染过程平均风场上的风速均为小风或静风,从湖北到河南南部风向为偏南风;而第2和第3次重污染过程平均风场分别以偏东和偏北风为主.第2和第3次重污染过程中均存在明显的由北向南的污染物输送过程.3次重污染过程中,河南省本地排放对本省PM_(2.5)浓度的平均贡献率最大,而河南省周边区域对河南PM_(2.5)浓度的平均贡献率在这3次过程中不一样,第1次重污染过程,河南南部主要受偏南风影响,湖北对河南PM_(2.5)浓度的平均贡献率最大,为20.7%;第2和第3次重污染过程主要受偏东风影响,安徽和江苏对河南PM_(2.5)浓度的平均贡献率最大,分别为17.7%和18.5%.3次重污染过程中,安阳的主要污染输送源均不相同,分别来自河北、江苏和安徽、本省.  相似文献   

13.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   

14.
贾佳  丛怡  高清敏  王玲玲  杨静静  张国辉 《环境科学》2020,41(12):5256-5266
为揭示郑州市冬季空气污染过程及形成原因,选取郑纺机国控站点为采样点,探讨2019年12月郑州大气污染物浓度和主要气象参数特征,对比不同污染阶段PM2.5水溶性离子、元素和碳质组分浓度变化,并利用空气质量模型模拟结果,分析采样期间污染源排放与区域传输对采样点PM2.5质量浓度的贡献.结果表明,采样期间第一次和第二次重污染形成和消散过程略有差异,分别呈现出"缓慢累积、缓慢清除"和"缓慢积累、快速清除"的特征.第一次和第二次重污染时段NO3-、SO42-和NH4+质量浓度占PM2.5比值达到41.5%和46.2%,OC/EC比值分别为4.0和4.5,二次气溶胶颗粒的大量生成是两次重污染形成的主要原因.采样期间本地、东部、南部、西部和北部区域对采样点PM2.5浓度贡献占比均值分别为58.0%、2.4%、6.7%、6.9%和12.7%,第一次重污染是本地污染物排放和外来源区域传输共同作用的结果,期间西部和南部区域及外来工业源贡献占比有所升高;而第二次重污染则主要受到本地大气污染物累积的影响,期间交通源、扬尘源和燃煤源污染贡献骤增,外部区域对采样点PM2.5浓度的影响有所减弱.  相似文献   

15.
基于天气背景天津大气污染输送特征分析   总被引:8,自引:7,他引:1       下载免费PDF全文
蔡子颖  杨旭  韩素芹  姚青  刘敬乐 《环境科学》2020,41(11):4855-4863
区域输送是大气污染防治中需要考虑的重要因素,本文利用大气化学模式定量估算2016年10月~2017年9月区域输送对天津的影响,重点基于天气背景分析区域输送影响和气象条件的关系,为京津冀地区大气污染联防联控提供支撑.结果表明,京津冀地区各城市区域输送贡献百分率平原城市显著高于沿山城市,天津一次PM2.5本地贡献62.9%,区域输送贡献37.1%,主要受沧州、廊坊、河北中南部、北京、唐山和山东等地输送影响,每年4~6月区域输送最显著,7~8月区域输送最弱.区域输送与天气形势、风场和降水等气象条件密切相关,高压后和锋前低压是区域输送占比最高的两种污染天气类型,西南风、西风和南风3个风向下天津大气污染输送影响最为明显,风速2~3 m ·s-1时最有利于PM2.5区域传输,降水超过5 mm以上将降低大气污染物区域传输效率.对于不同污染类型和重污染阶段,轻度污染天气时区域输送贡献最为明显,比均值偏高20.5%,重污染天气虽受静稳气团控制,但由于周边区域高浓度的PM2.5,污染气团迁移对区域内污染聚集传输有显著影响,重污染期间PM2.5输送贡献占比超过均值,约偏高10%~15%.重污染过程中,开始积累阶段和峰值阶段,输送贡献占比高于其它时期,与暴发阶段相比偏高14.5%和19.5%,重污染暴发阶段本地排放贡献更明显,比均值偏高9.9%.  相似文献   

16.
为了深入认识宁波市冬季细颗粒物(PM2.5)的污染特征和主要影响因素的作用规律,利用Models-3/CMAQ模式系统对2013年1月宁波市的PM2.5污染形成过程进行了模拟分析.结果表明,宁波市PM2.5的重点污染区主要分布在市区、北部地区及东部沿海,除了受到局地污染源排放的影响外,对比非污染的情况,大气输入和气溶胶生成作用的增强是引起PM2.5污染的主导因素,其中水平传输过程对PM2.5浓度升高的贡献最为突出.气溶胶过程的贡献在近地面(0~80 m)最显著,随着高度升高而逐渐减弱.硝酸盐在局地二次生产的细颗粒物中占主要份额(~70%).对于硫酸盐,局地二次生成所占的比例很低,主要来自宁波局地排放和宁波以外地区的大气传输(贡献比例分别为44%和40%).宁波市的PM2.5污染主要受到来自北向沿岸气团(占比54%)、西北向大陆气团(占比21%)和西向局地气团(占比25%)的传输影响.在西北方向短距离区域传输的作用下PM2.5浓度最高;在我国中东部大范围灰霾天气的影响下,西北向和北向的长距离传输作用也会导致宁波地区的PM2.5污染.  相似文献   

17.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

18.
2015年12月北京市空气重污染过程分析及污染源排放变化   总被引:13,自引:8,他引:5  
2015年12月,北京市及周边地区连续多次出现重污染天气.在此期间,北京市空气重污染应急指挥部两次发布红色预警.为厘清该月重污染的发生过程、生消变化,测算了应急措施下的污染源排放变化情况,并采用数值模拟和地面观测相结合的分析方法,对重污染的形成原因进行初步分析,同时对应急措施的环境效果进行评估.结果表明:1虽然2015年12月北京市主要大气污染物排放量较去年同期有所下降,但排放强度仍然较大,是重污染过程的内因;气象扩散条件不利是重要的外因,地面风速弱,大气稳定度高,相对湿度高,边界层高度降低,源排放及气象因素共同导致了此轮重污染过程.2红色预警应急措施可实现污染物日排放强度减少36%左右,PM2.5浓度下降11%~21%,预警的应急措施不能扭转重污染的态势,但对于缓解PM2.5污染加重趋势有明显的效果.3在重污染天气下,污染物仍在大气中累积,应急措施最明显的效果发生在实施后的48~72 h后,因此建议在PM2.5浓度快速上升前36~48 h实施减排措施,从而对空气质量预报准确性提出更高的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号