首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, international efforts to mitigate climate change have focussed on reducing emissions of greenhouse gases in the energy, transportation and agriculture sectors, and on sequestering atmospheric carbon dioxide in forests. Here, the potential to complement these efforts by actions to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface is explored. Preliminary estimates derived using a static two dimensional radiative transfer model indicate that such efforts could amplify the overall planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30% or 0.76 Wm− 2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. While a scoping analysis indicates the technical feasibility of sufficiently enhancing human settlement and grassland albedos to levels needed to achieve reductions in radiative forcing projected here, additional study is required on two fronts. Firstly, the modelled radiative forcing reductions are static estimates. As they would generate climate feedbacks, more detailed dynamic climate modelling would be needed to confirm the stationary value of the radiative forcing reduction that would result from land surface albedo amplification. Secondly, land surface albedo amplification schemes may have important economic and environmental impacts. Accurate ex ante impact assessments would be required to validate global implementation of related measures as a viable mitigation strategy.  相似文献   

2.
黑碳已经成为仅次于二氧化碳的气候影响因子,黑碳的排放问题越来越受到人们的关注。主要探讨了黑碳对气候的影响机理,并论述了黑碳主要是通过辐射强迫对全球气候产生影响,其中辐射强迫包括对可见光和部分红外光强吸附而造成的直接辐射强迫和通过云凝结核和冰雪反射影响等造成的间接辐射强迫。另外,还讨论了中国黑碳的排放问题,并且针对不同类别的排放源,提出了一些可行的减排建议。  相似文献   

3.
The climate impact from the useof peat for energy production in Sweden hasbeen evaluated in terms of contribution toatmospheric radiative forcing. This wasdone by attempting to answer the question`What will be the climate impact if onewould use 1 m2 of mire for peatextraction during 20 years?'. Two differentmethods of after-treatment were studied:afforestation and restoration of wetland.The climate impact from a peatland –wetland scenario and a peatland –forestation – bioenergy scenario wascompared to the climate impact from coal,natural gas and forest residues.Sensitivity analyses were performed toevaluate which parameters that areimportant to take into consideration inorder to minimize the climate impact frompeat utilisation. In a `multiple generationscenario' we investigate the climate impactif 1 Mega Joule (MJ) of energy is produced every yearfor 300 years from peat compared to otherenergy sources.The main conclusions from the study are:?The accumulated radiative forcing from the peatland – forestation – bioenergy scenario over a long time perspective (300 years) is estimated to be 1.35 mJ/m2/m2 extraction area assuming a medium-high forest growth rate and medium original methane emissions from the virgin mire. This is below the corresponding values for coal 3.13 mJ/ m2/ m2 extraction area and natural gas, 1.71 mJ/ m2/ m2 extraction area, but higher than the value for forest residues, 0.42 mJ/ m2/ m2 extraction area. A `best-best-case' scenario, i.e. with high forest growth rate combined with high `avoided' methane (CH4) emissions, will generate accumulated radiative forcing comparable to using forest residues for energy production. A `worst-worst-case' scenario, with low growth rate and low `avoided' CH4 emissions, will generate radiative forcing somewhere in between natural gas and coal.?The accumulated radiative forcing from the peatland – wetland scenario over a 300-year perspective is estimated to be 0.73 –1.80 mJ/ m2/ m2 extraction area depending on the assumed carbon (C) uptake rates for the wetland and assuming a medium-high methane emissions from a restored wetland. The corresponding values for coal is 1.88 mJ/ m2/ m2 extraction area, for natural gas 1.06 mJ/ m2/ m2 extraction area and for forest residues 0.10 mJ/ m2/ m2 extraction area. A `best-best-case' scenario (i.e. with high carbon dioxide CO2-uptake combined with high `avoided' CH4 emissions and low methane emissions from the restored wetland) will generate accumulated radiative forcing that decreases and reaches zero after 240 years. A `worst-worst-case' (i.e. with low CO2-uptake combined with low `avoided' CH4 emissions and high methane emissions from the restored wetland) will generate radiative forcing higher than coal over the entire time period.?The accumulated radiative forcing in the `multiple generations' – scenarios over a 300-year perspective producing 1 MJ/year is estimated to be 0.089 mJ/ m2 for the scenario `Peat forestation – bioenergy', 0.097 mJ/ m2 for the scenario `Peat wetland with high CO2-uptake' and 0.140 mJ/ m2 for the scenario `Peat wetland with low CO2-uptake'. Corresponding values for coal is 0.160 mJ/ m2, for natural gas 0.083 mJ/ m2 and for forest residues 0.015 mJ/ m2. Using a longer time perspective than 300 years will result in lower accumulated radiative forcing from the scenario `Peat wetland with high CO2-uptake'. This is due to the negative instantaneous forcing that occurs after 200 years for each added generation.?It is important to consider CH4 emissions from the virgin mire when choosing mires for utilization. Low original methane emissions give significantly higher total climate impact than high original emissions do.?Afforestation on areas previously used for peat extraction should be performed in a way that gives a high forest growth rate, both for the extraction area and the surrounding area. A high forest growth rate gives lower climate impact than a low forest growth rate.?There are great uncertainties related to the data used for emissions and uptake of greenhouse gases in restored wetlands. The mechanisms affecting these emissions and uptake should be studied further.  相似文献   

4.
A streamlined hybrid life cycle assessment is conducted to compare the global warming potential (GWP) and primary energy use of conventional and organic wheat production and delivery in the US. Impact differences from agricultural inputs, grain farming, and transport processes are estimated. The GWP of a 1 kg loaf of organic wheat bread is about 30 g CO2-eq less than the conventional loaf. When organic wheat is shipped 420 km farther to market, organic and conventional wheat systems have similar impacts. These results can change dramatically depending on soil carbon accumulation and nitrous oxide emissions from the two systems. Key parameters and their variability are discussed to provide producers, wholesale and retail consumers, and policymakers metrics to align their decisions with low-carbon objectives.  相似文献   

5.
To simulate climate change impacts on pastures and domestic herbivores as well as feedbacks to the atmosphere in terms of greenhouse gas emissions, we have improved a process-based biogeochemical pasture model, PaSim. The overall aim was to simulate the meat and milk production of cattle (suckler cows with their calves, dairy cows and heifers) in response to climate and management, as well as feedbacks to the atmosphere through enteric methane emissions. Herbage intake at grazing was calculated from animal characteristics, herbage availability, diet digestibility and air temperature. With suckler cows, milk production and changes in daily liveweight and body condition were calculated from net energy balance. The net energy intake of dairy cows and their body reserves at turnout to pasture were used to simulate milk production at pasture, daily liveweight and body condition changes, taking into account cow energy requirements and intake capacity. Heifer growth was determined from heifer net energy intake and liveweight. Net energy intake was used to assess enteric methane production through a conversion factor, which depends both on the energy level of the diet and on the herbivore type. The model was assessed against experimental data for animal performance and methane emissions at grazing. Predictions show good agreement with observations. On average, the root mean square error was 6.5, 4 and 2.5% for the liveweights of suckler cows, suckler calves and heifers, respectively, 18% for dairy milk production and 12% for enteric methane emissions. By comparing this new version of the PaSim model to the previous version, we show that a greater accuracy in animal performance modelling improves the sensitivity of the model to interannual climate variability. However, long term (30 years) projections of climate change impacts on grasslands and of radiative feedbacks to the atmosphere are not significantly modified. The originality and the validity domain of the model are discussed.  相似文献   

6.
The aim of the study, on which this paper is based, was to provide guidance to consumers to make environmentally responsible choices in their food consumption, to assist food supply chain stakeholders to identify the key areas for environmental improvements, and to provide policy makers with a tool for monitoring the potential impacts on climate change resulting from developments within the food sector. At the macro level, the EIO-LCA model was developed specifically for the Finnish food chain; at the micro level, LCAs were performed on 30 lunch portions. The contribution of the Finnish food chain to climate change was 14%, which comprised 40% CO2 emissions, 25% CH4 emissions, and 34% N2O emissions. The share of impacts from domestic agricultural processes was the highest, at 69%. The impact of a single lunch portion ranged between 0.65 and 3.80 kg of equivalent CO2. According to the EIO-LCA model, the average impact was 7.7 kg CO2 eq/person daily. The consumer phase accounted for between 8 and 47% of the climate change impacts for homemade portions. In ready-to-eat portions industry and retail phases were emphasized, representing 25-38% of climate change impacts. We present an approach to steer the Finnish food sector onto an environmentally sustainable path; practical tools for consumers and farmers will especially need to be developed further.  相似文献   

7.
An extended Life Cycle Assessment (LCA) is performed for evaluating the impacts of a woody biomass supply chain for heating plants in the alpine region. Three main aspects of sustainability are assessed: greenhouse gas emissions, represented by global warming potential (GWP) impact category, costs and direct employment potential. We investigate a whole tree system (innovative logging system) where the harvest of logging residues is integrated into the harvest of conventional wood products. The case study is performed in Valle di Fiemme in Trentino region (North Italy) and includes theoretical and practical elements. The system boundary is the alpine forest fuel system, from logging operations at the forest stand to combustion of woody biofuels at the heating plant. The functional unit is 1 m3 solid over bark of woody biomass, delivered to the district heating plant in Cavalese (Trento). The relative sustainability of traditional and innovative systems is compared and energy use is estimated. Results show that the overall GWP and costs are about 13 kg CO2equivalent and 42 euro per functional unit respectively for the innovative system. Along the product supply chain, chipping contributes the greatest share of GWP and energy use, while extraction by yarder has the highest financial costs. The GWP is reduced by 2.3 ton CO2equivalent when bioenergy substitutes fuel oil and 1.7 ton CO2equivalent when it substitutes natural gas. The sensitivity analysis illustrates that variations in fuel consumption and hourly rates of costs have a great influence on chipping operation and extraction by cable yarder concerning GWP and financial analysis, respectively. This is confirmed by sensitivity analysis. Better technologies, the use of biofuels along the product supply chain and more efficient systems might reduce these impacts. Replacing the traditional system with the innovative one reduces emissions and costs. A low energy input ratio is required for harvesting logging residues. The direct employment potential is a conflicting aspect and needs further investigations.  相似文献   

8.
氢燃料电池汽车动力系统生命周期评价及关键参数对比   总被引:1,自引:1,他引:0  
陈轶嵩  兰利波  郝卓  付佩 《环境科学》2022,43(8):4402-4412
发展氢燃料电池汽车被认为是解决能源安全和环境污染问题的理想解决方案之一,为量化探究氢燃料电池汽车动力系统的化石能源消耗和排放情况,运用GaBi软件建模,以新能源汽车相关技术路线为参考,构建我国氢燃料电池汽车动力系统的数据清单并对其全生命周期化石能源消耗和全球变暖潜值情况进行定量评价计算和预测分析,对不同类型的双极板、不同能量控制策略和不同制氢方式对环境的影响分别进行了对比研究,并对关键数据进行了不确定分析.结果表明,预计到2030年我国每台氢燃料电池汽车动力系统生命周期的化石能源消耗量(ADPf)、全球变暖潜值(GWP,以CO2 eq计)和酸化潜值(AP,以SO2 eq计)分别为1.35×105 MJ、9108 kg和15.79 kg.动力系统生产制造阶段的化石能源消耗和全球变暖潜值均高于使用阶段,主要原因是燃料电池堆栈和储氢罐的制造过程.金属双极板、石墨复合双极板和石墨双极板的制造工艺中石墨复合双极板的综合环境效益最好.能量控制策略的优化会使得氢能消耗降低,当氢能消耗降低22.8%时,动力系统的生命周期化石能源消耗和全球变暖潜值分别降低10.4%和8.3%.相比于甲烷蒸气重整制氢,基于混合电网电解水制氢的动力系统生命周期全球变暖潜值高出53.7%[KG-*6],而基于水电电解水制氢降低39.6%.降低动力系统生命周期化石能源消耗和全球变暖潜值的措施包括优化能量控制策略降低氢能消耗、规模化发展可再生能源发电电解水制氢产业和聚焦突破燃料电池堆栈关键技术实现性能提升.  相似文献   

9.
林婷  吴烨  何晓旖  张少君  郝吉明 《环境科学》2018,39(8):3946-3953
氢燃料电池车(FCV)具有运行阶段高能效和零排放的优点,近年来得到快速的商业化发展.氢能生产具有多种技术路径,不同路径的能源和环境效益存在显著差异.本研究采用生命周期评价方法,运用GREET模型对不同氢燃料路径下的FCV燃料周期(WTW)的化石能源消耗和CO_2排放进行了全面评价.选取了多种制氢路径作为评价对象,建立了中国本地化的FCV燃料生命周期数据库,在此基础上分析了FCV相对传统汽油车的WTW节能减排效益,并和混合动力车和纯电动车进行比较.结果表明,使用可再生电力和生物质等绿色能源制氢供应FCV能取得显著的WTW节能减排效益,可削减约90%的化石能耗和CO_2排放.在发展相对成熟的传统能源制氢路径中,以焦炉煤气制得氢气为原料的FCV,能产生显著的节能减排效益,其化石能耗低于混合动力车,CO_2排放低于混合动力车和纯电动车.结合对资源储备和技术成熟度的考虑,我国在发展氢能及FCV过程中,近期可考虑利用焦炉煤气等工业副产物制氢,并且规划中远期的绿色制氢技术发展.  相似文献   

10.
The Finnish approach that is starting from the basic human needs of food, housing, mobility and related lifestyles enables us to address the social dimension of sustainable development alongside the ecological and economic dimensions. In this context environmental problems cannot be resolved in isolation from people’s everyday lives, as can happen if environmental policies are based purely on emissions.But it is also worth questioning the potential for national SCP programmes in today’s global markets. Over the last ten years, domestic material flows within the Finnish economy have remained fairly constant, with gains in material efficiency cancelled out by increasing levels of material consumption. However, external material flows and the consequent environmental impacts have steadily increased, and the magnitude and environmental impacts of both imports and exports are approximately the same as for domestic flows. This means that the role of external material flows can no longer be ignored in national SCP policies.It is also important to integrate SCP with climate policies. Finland’s national climate and energy strategy is mainly based on the need to reduce CO2 emissions from energy production and industrial installations, but there is also a need for complementary actions to reduce the carbon footprints caused by private and public consumption.  相似文献   

11.
Biofuels are heavily debated as to their potential to reduce transport-related greenhouse gas emissions. Life cycle thinking gave rise to formal evaluations of the energy balance of such fuels, which led to the vigorously conducted “corn to ethanol” debates. Just as consensus was building on such evaluations came the “carbon debt” insights, a result of applying consequential Life Cycle Assessment (LCA) backed by advanced economic modeling. Increasingly, hopes have shifted to the 2nd generation biofuels, viewed as a “technological home run”. Could this also backfire? We investigate a simple South African case in which there might not be improvements in environmental performance: a sugar mill sells its bagasse, currently used at low efficiency to provide process heat, to an advanced biofuels producer, and buys an equivalent amount of coal without investing in efficiency improvements. Seven scenarios are generated, ranging from the status quo, where no bagasse is diverted, to 100% bagasse diversion, with one scenario including an energy efficiency improvement in the sugar mill. A consequential LCA is applied to the seven scenarios, covering global warming potential (GWP), non-renewable energy use, aquatic eutrophication and terrestrial acidification. A basic financial analysis of the proposed scenarios shows that they are realistic, with potentially lucrative returns. Results show that diverting bagasse without efficiency improvements from its current use to an ethanol bio-refinery would indeed backfire for all environmental impacts studied. The base case outperforms all the other scenarios, with the 100% bagasse diversion scenario emerging the worst. Investments into energy efficiency are therefore a precondition for diverting cellulosic residues into biofuel production.  相似文献   

12.
Increased and intensified pig production has raised the needs for proper management systems of pig manure in order to reduce negative environmental impacts. The objectives of this study were to identify the most significant environmental impacts from pig manure management considering a wide range of impact categories and to determine which integrated technology system at which handling stage can achieve the highest impact reduction. Twelve scenarios applying various treatment, storage and land application systems were developed and compared. Life cycle assessment (LCA) with the aim of capturing the actual consequences of the considered scenarios was selected as the tool for impact quantification. The most important impact categories in this investigation are global warming (GWP), aquatic eutrophication (AEP), respiratory inorganics (RIP), and terrestrial eutrophication (TEP). The two latter impacts, caused by ammonia emissions, have not been widely considered in most of previous LCA studies on pig manure management. The main keys for the effective impact reduction are the integration of treatment technology systems aiming at energy recovery with high nutrient recovery and control of greenhouse gas, ammonia, and nitrate emissions at every handling stage. For GWP and AEP, the anaerobic digestion-based scenario with natural crust storage achieves the highest impact reduction because of high efficiencies in energy and nutrient recovery with restricted emissions of GHG and nitrate. For RIP and TEP, the incineration and thermal gasification based scenarios and the scenario without a treatment system applying the deep injection method yield the highest impact minimisation due to the lowest ammonia emissions. This study further indicates the need to consider all significant impacts to decide the best management options taking into consideration local conditions.  相似文献   

13.
空气污染对气候变化影响与反馈的研究评述   总被引:7,自引:1,他引:6  
气候变化和空气污染都是人类面临的重要环境问题,其影响与反馈已成为空气污染和气候变化领域的研究热点. 总结了空气污染与气候变化相互作用机理,系统梳理了国内外有关空气污染对气候变化影响及反馈的研究成果,并且重点评述了黑碳和硫酸盐气溶胶辐射强迫及其气候效应、气候变化对近地面臭氧和颗粒物影响等领域的研究进展. 分析指出,现阶段尚没有一个能够综合考虑气象条件、排放源、下垫面等诸多因子对空气污染的影响机理过程模型,无法定量描述大气组分在不同气象条件作用下的演变过程等. 提出未来研究中应深化对机理机制的认识,减少模式的不确定性,加强在排放清单的编制、立体观测网的构建、互馈机理的试验、模式的集成耦合等方面的研究.   相似文献   

14.
This paper evaluates the influence of different policy-related and scientific choices on the calculated regional contributions to global climate change (the “Brazilian Proposal”). Policy-related choices include the time period of emissions, the mix of greenhouse gases and different indicators of climate change impacts. The scientific choices include historical emissions and model representations of the climate system. We generated and compared results of several simple climate models. We find that the relative contributions of different nations to global climate change—from emissions of greenhouse gases alone—are quite robust, despite the varying model complexity and differences in calculated absolute changes. For the default calculations, the average calculated contributions to the global mean surface temperature increase in 2000 are about 40% from OECD, 14% from Eastern Europe and Former Soviet Union, 24% from Asia and 22% from Africa and Latin America. Policy-related choices, such as time period of emissions, climate change indicator and gas mix generally have larger influence on the results than scientific choices. More specifically, choosing a later attribution start date (1990 instead of 1890) for historical emissions, decreases the contributions of regions that started emitting early, such as the OECD countries by 6 percentage points, whereas it increases the contribution of late emitters such as Asia by 8 percentage points. However, only including the fossil CO2 emissions instead of the emissions of all Kyoto gases (fossil and land use change), increases the OECD contributions by 21 percentage points and decreases the contribution of Asia by 14 percentage points.  相似文献   

15.
Recent climate modeling studies have concluded that cumulative carbon emissions determine temperature increase, regardless of emission pathways. Accordingly, the optimal emission pathway can be determined from a socioeconomic standpoint. To access the path dependence of socioeconomic impacts for cumulative carbon emissions, we used a computable general equilibrium model to analyze impacts on major socioeconomic indicators on a global scale for 30–50 pathways with different emission reduction starting years, different subsequent emission pathways, and three different cumulative 2100 emission scenarios (emissions that meet the 2 °C target, the 2 °C target emissions plus 10 %, and emissions producing radiative forcing of 4.5 W/m2). The results show that even with identical cumulative emission figures, the resulting socioeconomic impacts vary by the pathway realized. For the United Nations 2 °C target, for example, (a) the 95 % confidence interval of cumulative global gross domestic product (GDP) is 1355–1363 trillion US dollars (2010–2100, discount rate = 5 %), (b) the cumulative GDP of pathways with later emission reduction starting years grows weaker (5 % significance level), and (c) emissions in 2100 have a moderate negative correlation with cumulative GDP. These results suggest that GDP loss is minimized with pathways with earlier emission reduction followed by more moderate reduction rates to achieve lower emission levels. Consequently, we suggest an early emission peak to meet the stringent target. In our model setting, it is desirable for emissions to peak by 2020 to reduce mitigation cost and by 2030 at the latest to meet the 2 °C target.  相似文献   

16.
为评估车用钛酸锂(LTO)电池对能源、环境与资源的影响,构建了包括重制与二次使用阶段在内的车用锂电池全生命周期评价模型,以某款国产纯电动客车用钛酸锂电池包为评价对象,计算得出每kW·h钛酸锂电池全生命周期的总能量消耗(CED)、全球变暖潜值(GWP)和不可再生矿产资源耗竭潜值(ADP(e))分别为2.80×104MJ、1.86×103kg CO2eq.以及4.77×10-3kg Sbeq.其全生命周期CED与GWP主要与两个使用阶段中由电池充放电效率引起的能量损耗相关,生产阶段GWP主要来源于正负极材料、铝制材料和N-甲基吡咯烷酮.基于全生命周期存储-释放每MJ能量的视角,发现二次使用可显著降低电池全生命周期GWP;与已有研究中其他锂电池对比可知LTO电池生产阶段GWP最低.  相似文献   

17.
基于7辆国6轻型车的WLTC循环测试,计算了汽油?E10和MTBE10(汽油中添加10%体积的甲基叔丁基醚)排放的温室气体的致暖效应(GWP)、臭氧生成潜势(OFP)和非甲烷有机气体(NMOG)排放.结果表明,车队平均N2O和CH4排放的GWP分别为0.6和0.07g CO2e/km.E10和MTBE10的非CO2温室...  相似文献   

18.
Quantification of energy related industrial eco-efficiency of China   总被引:1,自引:0,他引:1  
Improving eco-efficiency is propitious for saving resources and reducing emissions, and has become a popular route to sustainable development. We define two energy-related eco-efficiencies: energy efficiency (ENE) and greenhouse gas (GHG) emission-related eco-efficiency (GEE) using energy consumption and the associated GHG emissions as the environmental impacts. Using statistical data, we analyze China’s energy consumption and GHG emissions by industrial subsystem and sector, and estimate the ENE and GEE values for China in 2007 as 4.871×107 US/PJ and 4.26×10 < sup > 8 < /sup > US/PJ and 4.26×108 US/TgCO2eq, respectively. Industry is the primary contributing subsystem of China’s economy, contributing 45.2% to the total economic production, using 79.6% of the energy consumed, and generating 91.4% of the total GHG emissions. We distinguish the individual contributions of the 39 industrial sectors to the national economy, overall energy consumption, and GHG emissions, and estimate their energyrelated eco-efficiencies. The results show that although ferrous metal production contributes only 3.5% to the national industrial economy, it consumes the most industrial energy (20% of total), contributes 16% to the total industrial global warming potential (GWP), and ranks third in GHG emissions. The power and heat sector ranks first in GHG emissions and contributes one-third of the total industrial GWP, although it only consumes about 8% of total industrial energy and, like ferrous metal production, contributes 3.5% to the national economy. The ENE of the ferrous metal and power and heat sectors are only 8 and 2.1×107 US/PJ, while the GEE for these two sectors are 9 and 4×10 < sup > 4 < /sup > US/PJ, while the GEE for these two sectors are 9 and 4×104 US/GgCO2eq, respectively; these are nearly the lowest ENE and GEE values among all 39 industry sectors. Finally, we discuss the possibility of ecoefficiency improvement through a comparison with other countries.  相似文献   

19.
选取冀南城市群为研究区,基于2012~2016年VⅡRS卫星数据热异常点产品,结合工业能源消耗量、工业废气排放量以及空气质量数据,利用统计分析和空间分析探讨热异常点辐射强度的变化规律及其与工业能源消耗、污染物排放之间的关系.结果表明,热异常点的辐射强度可以表征工业能源消耗量,并间接反映工业生产规模与污染排放水平.辐射强度越大,工业生产规模越大.辐射强度与工业SO2排放量呈较高的正相关,与NOx排放量呈中度线性相关.PM10、SO2及NO2浓度与工业能源消耗和热异常点辐射强度灰色关联度均较高.工业生产活动产生的污染物中,颗粒物对大气污染的贡献最高,其次为SO2.2012~2016年,邯郸、石家庄以及廊坊的工业生产空间分布呈逐年收缩聚集的趋势,保定和沧州的工业生产分别出现向南、向西迁移趋势.  相似文献   

20.
20世纪80年代中期以来的气候变暖,尤其是90年代中期以来的气候显著变暖带给社会经济发展的利与弊,一直以来受到广泛关注。气候变暖对于建筑耗能,尤其是对采暖和降温总耗能的影响很值得研究。论文以主要使用电能进行空间调节的中国夏热冬冷地区为对象,以《夏热冬冷地区居住建筑节能设计标准JCJ134-2001》中所规定的采暖、降温耗电量限值为依据,研究了气候变暖对该区居住建筑单位面积采暖年耗电量、降温年耗电量及采暖降温年耗电总量的影响。结果表明,1986年以来的气候变暖,尤其是1996年以来的气候显著变暖,理论上使夏热冬冷地区居住建筑单位面积采暖年耗电量降低;同时增加了相当一部分地区居住建筑单位面积降温年耗电量;除个别地区外,气候变暖理论上使中国夏热冬冷地区居住建筑单位面积采暖降温耗电总量普遍下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号