首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
在Pt/Al_2O_3催化剂上用外循环无梯度反应器研究了异丁醇完全氧化动力学,异丁醇完全氧化动力学方程用异丁醇及氧吸附,CO_2吸附阻碍的L-H模型描述,用正交设计法求出动力学方程中的参数,用脉冲法测定了异丁醇、氧及CO_2的吸附热。  相似文献   

2.
在Pt/Al_2O_3催化剂用玻璃外循环无梯度反应器研究了丁烷、反-丁烯-2及顺-丁烯-2深度氧化动力学。深度氧化服从L-H机理模型。用正交设计法估计了动力学方程中的参数值。用脉冲色谱法研究深度氧化的L-H机理,并测定了吸附热。求出了深度氧化的CO_2生成速度。  相似文献   

3.
采用浸渍法制备了Pt/CeO_2和Pt/Al2O_3催化剂,并通过XRD、BET、ICP-OES、H2-TPR、XPS等手段表征其物理化学性质.结果发现,Pt/CeO_2和Pt/Al2O_3催化剂上Pt负载量约为0.6%,Al2O_3载体上Pt颗粒尺寸更小,Pt/CeO_2的可还原性更强.甲苯催化氧化活性评价结果表明,Pt/CeO_2催化剂表现出更好的催化活性,T50=170℃,T90=190℃.通过UV-Raman、甲苯TPD、GC/MS、In-situ FTIR等手段进一步研究发现,Pt/CeO_2活化甲苯及反应供氧的机制与Pt/Al2O_3存在区别,其活性更好是因为:(1)负载在CeO_2表面存在高电子密度的Pt原子,具有更强的活化甲苯能力,可以直接使苯基和甲基间的C—C链发生断裂;(2)Pt的负载促进了CeO_2氧空位形成,进一步提高了CeO_2的储氧性能,加速氧循环.除了Pt解离气相氧之外,CeO_2还可以提供活性氧物种参与催化氧化甲苯的反应,进一步提高甲苯催化氧化效率.  相似文献   

4.
GdFeO3用柠檬酸络合制备。用XRD测定GdFeO3为钙钛矿结构。用CO还原脉冲及用O2再氧化脉冲证实在GdFeO3上CO氧化为Redox机理。用外循环流动无梯度反应顺研究了CO氧化稳态动力学。用正交设计法估计动力学方程中的参数。还原催化剂再氧化为控制步骤。  相似文献   

5.
开发了涂覆在金属丝网基体上的La_(0.8)Ca_(0.2)FeO_3/MgAl_2O_4复合整体催化剂,用于低浓度甲烷(0.5%,体积分数)催化燃烧反应.首先用沉积-沉淀法制备了La_(0.8)Ca_(0.2)FO_3(LCF)钙钛矿与Mg Al_2O_4尖晶石复合的粉末催化剂LCF/Mg Al2O4,用程序升温微反应器(TPRS)测定了粉末活性,结合XRD、BET、SEM、TPR的表征结果,筛选出了最佳复合物质的量比和最适焙烧温度.当LCF与Mg Al_2O_4复合后,抗烧结能力增强,以拟一级反应速率常数(k,L·g~(-1)·s~(-1))计的活性提高了1倍左右.然后采用浆料涂覆法,在表面改性的金属丝网蜂窝基体上分层涂覆了作为第二载体的MgAl_2O_4和LCF/Mg Al_2O_4复合粉体涂层,考察了复合粉体球磨前焙烧的温度、第二载体及活性层涂覆量的影响.最后在空速GHSV=40000 h~(-1)条件下测试了甲烷催化燃烧反应的活性.与陶瓷基体相比,涂覆在金属丝网基体上的LCF/MgAl_2O_4活性在600℃时提升了48.1%.500 h长运转试验发现,催化剂活性在初期的200 h下降了20.3%,然后基本保持稳定.  相似文献   

6.
通过水热法制备了暴露(001)晶面的Bi2WO6纳米片,利用光还原法将Pt纳米颗粒负载于其表面.选择苯甲醇氧化和罗丹明B(RhB)降解为探针反应,评价了催化剂的光催化性能.在苯甲醇氧化实验中,Pt负载暴露001晶面的Bi2WO6样品的苯甲醇转化率为20.7%,约为未负载样品的2倍.在RhB降解实验中,Pt负载样品在光照40min后对RhB的矿化率可达81.1%,而未负载样品RhB矿化率仅为55.8%,表明Pt负载样品具有更优的降解速率和矿化能力.催化剂性能的提升归因于高能晶面暴露和Pt负载的协同作用.Pt纳米颗粒的负载作为助催化剂增加了催化剂表面的活性位点,同时提高了晶面光生电子空穴对的分离和迁移效率.  相似文献   

7.
针对常规方法难以去除水中Br_3~-的问题,采用浸渍煅烧法制备了负载型纳米Pd/Al_2O_3粒子电极,研究了该电极电催化还原Br O-3的效果.催化剂的结构表征表明该反应实现了Pd纳米晶的均匀负载,纳米Pd/Al_2O_3具有较高的电催化活性和较低的能耗,其最佳反应条件为3%Pd负载量,0.9 m A·cm-2电流密度和1 g·L催化剂投量,酸性条件可促进Br O-3的直接或间接还原.ESR检测证实了Pd的负载增强了反应体系活性物种[H]的生成,进而促进了Br O-3的间接电催化还原.  相似文献   

8.
通过水热法制备了暴露(001)晶面的Bi2WO6纳米片,利用光还原法将Pt纳米颗粒负载于其表面.选择苯甲醇氧化和罗丹明B(RhB)降解为探针反应,评价了催化剂的光催化性能.在苯甲醇氧化实验中,Pt负载暴露001晶面的Bi2WO6样品的苯甲醇转化率为20.7%,约为未负载样品的2倍.在RhB降解实验中,Pt负载样品在光照40min后对RhB的矿化率可达81.1%,而未负载样品RhB矿化率仅为55.8%,表明Pt负载样品具有更优的降解速率和矿化能力.催化剂性能的提升归因于高能晶面暴露和Pt负载的协同作用.Pt纳米颗粒的负载作为助催化剂增加了催化剂表面的活性位点,同时提高了晶面光生电子空穴对的分离和迁移效率.  相似文献   

9.
采用共沉淀法制备了CuO/ZnO/Ce O_2、CuO/ZnO/ZrO_2和CuO/ZnO/Ce O_2-Zr O_2催化湿式空气氧化苯酚废水催化剂,并采用N_2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、程序升温还原(TPR)、N_2O滴定和电感耦合等离子体原子发射光谱等手段对催化剂进行了表征.结果表明,CuO/ZnO/Ce O_2-Zr O_2催化剂表现出最佳的催化性能.在200℃、2 MPa空气、苯酚初始浓度500 mg·L~(-1)的条件下,COD去除率为96.5%.XRD表明Ce O_2-Zr O_2复合氧化物载体以Ce_xZr_(1-x)O_2固溶体形式存在,增加了催化材料的储放氧能力.XPS表明Ce~(3+)和Ce~(4+)在催化剂表面共同存在,协调了氧化还原过程.TPR表明催化剂的还原性对催化剂的氧化活性起到至关重要的影响.由于CuO/ZnO/Ce O_2-Zr O_2催化剂活性组分和载体间的强相互作用,处理后的水样未发现金属离子,进而有效的提高了催化剂的稳定性和避免了对水样的二次污染.  相似文献   

10.
Pt/BaO/Al_2O_3 catalysts with different BaO loadings prepared from Al_2O_3 nanorods(Pt/BaO/Al_2O_3-nr) and irregular Al_2O_3 nanoparticles(Pt/BaO/Al_2O_3-np) were investigated for NOx storage and reduction(NSR). The Pt/BaO/Al_2O_3 materials derived from Al_2O_3 nanorods always exhibited much higher NOx storage capacity(NSC) over the whole temperature range of 100–400°C than the corresponding Pt/BaO/Al_2O_3-np samples containing the same BaO loading, giving the maximum NSC value of 966.9 μmol/gcatat 400°C, 1.4 times higher than that of Pt/BaO/Al_2O_3-np. Higher catalytic performance of nanorod-supported NSR samples was also observed during lean-rich cyclic conditions(90 sec vs. 5 sec), giving more than 98% NOx conversion at 300–450°C over the Pt/BaO/Al_2O_3-nr sample with 15% BaO loading. To reveal this dependence on the shape of the support during the NSR process, a series of characterization techniques including the Brunauer–Emmett–Teller(BET) method,X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), H_2 temperature programmed reduction(H2-TPR), and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) were also conducted. It was found that intimate contact of Ba–Al and Ba–Pt sites was achieved over the Pt/BaO/Al_2O_3 surface when using Al_2O_3-nr as a support.This strong interaction among the multi-components of Pt/BaO/Al_2O_3-nr thus triggered the formation of surface nitrite and nitrate during the lean period, and also accelerated the reverse spillover of ad-NOxspecies onto the Pt surface, enhancing their reduction and leading to high NSR performance.  相似文献   

11.
应用热分析技术对多环芳烃化合物催化氧化反应过程中催化剂初活性进行评价。比较了两种样品前处理方法,测定结果基本一致。分别测定了六种不同组分的过渡金属氧化物催化剂的初活性。考察了多环芳烃结构对其催化氧化难易的关系。实验结果表明,热分析可作为评价高沸点有机化合物深度氧化催化活性的可靠方法,且简便易行。  相似文献   

12.
高效低成本的催化剂是低温催化氧化脱除硫化氢(H2S)的研究重点,采用浸渍法研制了Cu/Al2O3催化剂,利用N2物理吸附、XRD(X射线衍射分析)、XPS(光电子能谱)、FT-IR(傅里叶变换红外光谱)等表征手段了解催化剂的表面结构和物相结构,并开展不同温度、相对湿度、Cu负载量条件下的H2S动态脱附以考察催化剂脱硫性能.结果表明:①催化剂是一种典型的介孔材料,且CuO和Cu2O高度分散在催化剂表面.②FT-IR结果表明,催化剂在H2S催化氧化过程中表面CuxO和表面结合水中的羟基均参与反应,且有SO42-的生成.③XRD、XPS结果表明,脱硫过程中有S单质和CuS的生成.④适宜的温度(50℃)和相对湿度(50%)会显著增强Cu基催化剂的脱硫性能.⑤负载量为3%的Cu基催化剂具有最佳的脱硫性能,穿透硫容量高达220.92 mg/g.研究显示,利用浸渍法可以合成低温催化氧化H2S的高硫容Cu基催化剂.   相似文献   

13.
铂、钯蜂窝催化剂高温老化对甲醇深度氧化的影响   总被引:1,自引:0,他引:1  
本研究对铂、钯蜂窝催化剂及分别添加助化剂CeO_2或WO_3,并于500℃、700℃、900℃或1100℃下经受热老化4h后,考察催化剂比表面、晶相结构及其对甲醇深度氧化活性、产物分布及反应动力学网络变化的情况。实验证明,添加CeO_2后,降低了铂催化剂的耐高温性能,但对钯催化剂无明显影响。添加WO_3,降低了钯催化剂对甲醇的氧化活性。经X-线衍射分析证明,在1100℃高温下,WO_3与堇青石载体中的氧化镁和氧化钙发生强相互作用,生成了相应的钨酸盐。甲醇氧化反应动力学研究表明,甲醇在新鲜和高温热老化的铂催化剂上,反应动力学网络表示式是有区别的。  相似文献   

14.
预防和控制低浓度气态甲醛(HCHO)仍是室内环境污染所面临的巨大挑战之一,设计合成吸附能力强、催化氧化性能高、稳定性好的催化剂具有重要的实际应用价值。采用水热法和溶胶-凝胶法制备了一系列Ag-Bi共掺杂的纳米结构Ag/Bi-TiO2光催化剂,用于在可见光、无动力条件下催化降解室内低浓度气态甲醛。并采用XRD、SEM、BET、H2-TPR、UV-vis、XPS等技术对所制催化剂进行表征分析,考察了制备方法、Ag-Bi掺入量、煅烧温度等条件对催化剂可见光催化氧化性能的影响。结果发现:水热法制得的Ag/Bi-TiO2-H催化剂降解甲醛效果最佳,其48h降解率可达到94.1%,可将浓度为1.076 mg/m3的甲醛降低至0.093 mg/m3,显著提升了TiO2的催化氧化性能,其Ag2O/Ag、Bi3+和TiO2间的协同耦合作用改善了催化剂的微观结构,增强其对可见光的吸收,促进了光生电子的形成及转移...  相似文献   

15.
The catalyst of CuOx/Al2O3 was prepared by the dipping-sedimentation method using γ-Al2O3 as a carrier. CuO and Cu2O were loaded on the surface of γ-Al2O3, characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In the presence of CuOx/Al2O3, the microwave-induced chlorine dioxide (ClO2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing 100 mg/L phenol. The relationships between removal percentage and initial ClO2 concentration, catalyst dosage, microwave power, contact time, initial phenol concentration and pH were investigated and the results showed that microwave-induced ClO2-CuOx/Al2O3 process could effectively degrade contaminants in a short reaction time with a low oxidant dosage, extensive pH range. Under a given condition (ClO2 concentration 80 mg/L, microwave power 50 W, contact time 5 min, catalyst dosage 50 g/L, pH 9), phenol removal percentage approached 92.24%, corresponding to 79.13% of CODCr removal. The removal of phenol by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process was a complicated non-homogeneous solid/water reaction, which fitted pseudo-first-order by kinetics. Compared with traditional ClO2 oxidation, ClO2 catalytic oxidation and microwave-induced ClO2 oxidation, microwave-induced ClO2 catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for the removal of phenol wastewater.  相似文献   

16.
柴油甲醇组合燃烧发动机的甲醛排放特性   总被引:2,自引:1,他引:1  
在一台加装独立的甲醇供给系统的自然吸气柴油机上,采用柴油甲醇组合燃烧模式(DMCC)进行台架试验.利用气相色谱仪分析技术,全面研究并总结了甲醛在不同的发动机工况如转速、负荷、排气温度(改变柴油氧化催化转化器DOC位置)和不同甲醇替代率的情况下的排放规律以及甲醛和未燃碳氢(HC)之间的相互关系.研究结果显示,DMCC模式下的甲醛排放主要受到负荷、甲醇替代率、排气温度3方面的共同影响.在中等负荷排温在240~380℃之间时,DOC促进甲醛的生成;在高负荷排温在400℃以上时,DOC减少甲醛排放.在同样工况下将DOC位置移近排气歧管对减少甲醛排放有显著的作用.在此情况下,当排气温度超过400℃,DOC后的甲醛排放体积分数降低到(10~15)×10-6左右,与燃用纯柴油的甲醛浓度相近.另外,未燃碳氢和甲醛的转化效率的规律有一定的关联.当排温高于320℃以后,尽管HC迅速下降到比原机还低的水平,但甲醛排放浓度却比较高.当排气温度超过380℃并将DOC位置移近排气歧管,此时,HC与甲醛的排放将同步减少直至接近零排放水平.  相似文献   

17.
樊灏  沈振兴  逯佳琪  常甜  黄宇 《环境工程》2021,39(6):99-105
装修等产生的室内甲醛严重影响人体健康,因此在室温下降解甲醛的需求日益迫切。目前,常温催化氧化法被视为最有前景的甲醛处理方法之一。沸石分子筛具有较大比表面积及较多吸附位点,以此为载体,以MnOx和CeOx为反应活性位点,通过共沉淀法成功合成了Mn1Cex/HZSM-5催化剂。该催化剂在常温下可降解96.86%的甲醛且具有良好的稳定性。此外,通过一系列的物理化学表征分析发现,Ce物种不仅能够显著提高催化剂中高价态锰的含量,还能带来更多的表面吸附羟基和吸附氧,进而提升催化剂的性能。鉴于其优异及稳定的性能、简便的合成方法,此高效除甲醛Mn1Cex/HZSM-5催化剂可为室温下除甲醛催化剂的合成提供新的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号