首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
采用52.5 L的A2O反应器,以乙酸和丙酸分别作为进水唯一碳源,系统研究了进水碳源类型对脱氮除磷和代谢过程的影响.结果表明,在进水COD为250 mg/L左右,NH+4-N为52 mg/L左右的条件下,原水碳源类型对TN的去除影响不大,系统TN去除率均在65%左右.进水碳源类型对TP的去除及相应污泥中PHA的类型、含量和代谢及糖原的变化影响较大.乙酸为唯一碳源时,厌氧区放磷浓度较高,污泥中PHA的成分主要为PHB和PHV,两者在厌氧区的合成量差别不大,PHB在随后的反应过程中变化较大,对除磷代谢过程起主要作用,而PHV的变化较小.丙酸作为进水唯一碳源时,厌氧区的放磷浓度偏低,主要合成PHV,几乎不含PHB,PHV在随后吸磷过程中浓度变化较大,对除磷代谢起主要作用,而且出水TP浓度偏低.碳源类型对污泥中糖原的代谢也有影响,乙酸为碳源时糖原的含量高,变化范围也较大,丙酸为碳源时糖原的变化幅度较小.在同步脱氮除磷系统中,与乙酸相比,丙酸是一种更合适的碳源.  相似文献   

2.
碳源对EBPR代谢过程及微生物特性的影响   总被引:4,自引:2,他引:2  
采用SBR反应器,研究了乙酸和丙酸分别作为唯一进水碳源时对EBPR过程物质转化及代表性微生物变化特性的影响,并对不同碳源可能导致不同的微生物代谢过程进行了讨论.SBR的运行模式为:厌氧2 h,好氧5 h,每天运行3个周期,乙酸和丙酸进水的COD均为300 mg/L,系统先用乙酸作为碳源运行60 d,随后以丙酸作为碳源运行60 d.结果表明,在采用乙酸作为碳源时,厌氧结束放磷和消耗COD的比值为0.35,生成的PHA中以PHB为主,占92.6%,PHV只占到7.4%,没有PH2MV生成.在采用丙酸作为碳源时,厌氧结束放磷和消耗COD的比值稍低,为0.27,生成的PHA中PHV占35.8%,PHB和PH2MV分别占10.2%和54.0%.2种碳源条件下系统都具有良好的EBPR效能,出水PO3-4-P均在检出限以下.对不同阶段的污泥进行DGGE分析表明,系统中的微生物发生了变化;扫描电镜图片和PHA染色结果分析表明,在乙酸作为碳源时,系统中的PAOs以球菌形式存在,而在丙酸作为碳源时,系统中的PAOs以杆菌形式存在.不同碳源培养出了不同类型的PAOs,两者代谢途径不同,但都具有较好的EBPR效能.  相似文献   

3.
不同丙酸/乙酸长期驯化的活性污泥对EBPR的影响   总被引:3,自引:1,他引:2  
张超  陈银广  刘燕 《环境科学》2008,29(9):2548-2552
通过长期驯化的SBR增强生物除磷系统,研究了不同丙酸/乙酸对磷和PHA转化的影响,以及微生物代谢PHA及其组分的计量学.结果表明,随着丙酸/乙酸的升高.系统的除磷能力增强;污水中合适的丙酸/乙酸(C-mol比)为2:1.计量学研究表明,聚磷菌消耗I C-mol乙酸生成0.65 C-mol PHB和0.33 C-mol(PHV PH2MV),消耗I C-mol丙酸生成极小量PHB和1.21C-mol(PHV PH2MV).磷去除率与(PHV PH2MV)代谢有良好的相关性.  相似文献   

4.
聚烃基烷酸转化对强化生物除磷影响研究   总被引:9,自引:5,他引:4  
刘燕  行智强  陈银广  周琪 《环境科学》2006,27(6):1103-1106
通过丙酸和乙酸C-mol比为0.5和2的合成废水驯化微生物的SBR反应器(SBR1和SBR2)批式实验,研究了强化生物除磷系统中聚烃基丁酸(PHB)和聚烃基戊酸(PHV)的转化对磷吸收/释放及去除率的影响.结果显示,磷的释放/吸收和去除率与PHB和PHV的转化有很好的相关性(R2>0.90).回归系数表明,特定废水驯化的污泥,磷的吸收和释放主要受PHB转化的影响,但磷的去除率却主要依赖于PHV的合成与降解;对于不同比例丙酸/乙酸废水驯化污泥,SBR2比SBR1污泥的PHB合成和降解能力增强,PHV合成和降解能力减小,生物除磷效果平均增加16.69%.因此,进水丙酸/乙酸比例及驯化影响聚磷微生物的PHB/PHV转化量,进而影响对磷的吸收/释放和除磷效果,PHB与PHV的转化量应作为生物除磷系统的关键调控因素考虑.  相似文献   

5.
采用SBR反应器,以合成废水作为反应器进水,研究高效除磷菌TP16厌氧聚PHB及释磷,好氧分解PHB和吸磷能力。试验结果表明:TP16好氧培养时,可以好氧聚集PHB,PHB浓度上升与乙酸的浓度下降呈负相关,乙酸吸收量与PHB/VSS的比值呈明显负相关关系;TP16厌氧培养时,底物乙酸浓度下降与菌体PHB的上升呈显著的负相关关系。磷释放试验表明,以乙酸作为底物,TP16厌氧培养时上清液中乙酸浓度的下降与磷浓度的增加呈负相关关系。  相似文献   

6.
分别以乙酸钠和葡萄糖为碳源,通过间歇实验,考察不同溶解氧(DO)浓度对厌氧-缺氧-好氧序批式反应器中活性污泥胞内贮存物聚羟基烷酸酯(PHA)、糖原和系统除磷性能的影响。实验表明:DO对以乙酸钠为碳源培养的胞内贮存物PHA和糖原影响较大,并影响污泥的除磷性能;对以葡萄糖为碳源培养的胞内物质影响较小,可能是因为细胞内存在其他类型的胞内贮存物。  相似文献   

7.
污泥厌氧产酸发酵液作碳源强化污水脱氮除磷中试研究   总被引:7,自引:6,他引:1  
为研究城市污泥厌氧产酸发酵液作为补充碳源强化生活污水脱氮除磷系统的效果和可行性,建造了一个总有效体积为4 660 L的A2/O中试反应系统,以实际城市污水为研究对象,考察了添加污泥产酸发酵液后的污水脱氮除磷效果并和单纯添加乙酸作碳源的效果进行了比较.结果表明,在进水COD为243.7 mg·L-1、NH+4-N为30.9 mg·L-1、TN为42.9 mg·L-1、TP为2.8 mg·L-1、硝化液回流比为200%和污泥回流比为100%的条件下,向缺氧池中投加乙酸能增强系统脱氮除磷效果,反应器的最佳进水流量和投加碳源SCOD增量分别为7 500 L·d-1和50 mg·L-1.污泥发酵液代替乙酸作为外加碳源时的平均出水COD、NH+4-N、TN和TP去除率分别为81.60%、88.91%、64.86%和87.61%,相对应的出水浓度分别为42.18、2.77、11.92和0.19 mg·L-1,满足我国《城镇污水处理厂污染物排放标准》GB 18918-2002所规定的一级A标准.结果表明,投加污泥产酸发酵液作为脱氮除磷碳源可达到和乙酸同样的效果,具有实际可行性,这为城市污泥处理处置实现资源化提供了一条新的可行途径.  相似文献   

8.
以乙酸钠和丙酸钠1:2混合作为碳源,进水COD浓度分别为200,400,600,800mg/L,研究混合碳源浓度对单级好氧生物脱氮除磷的影响,并通过比较微生物体内储能物质的变化,探讨混合碳源浓度对生物脱氮除磷性能影响的机理.结果表明,当进水磷和氨氮浓度分别为12,30mg/L时,随着进水COD由200增加至800mg/L,磷去除率由39.9%提升至86.4%(氮去除率从13.5%提升至96.4%).进水COD为400mg/L时单位挥发性悬浮固体(VSS)的磷和氮去除量达到最高[分别为(4.31±0.08)和(6.15±0.22)mg/g].当进水COD由200增加至400mg/L时生物除磷活性增强,而COD继续增加会使污泥沉降性能变差,脱氮除磷生物活性降低.好氧吸磷和同步硝化反硝化主要由微生物体内储能物质多β羟基烷酸盐(PHA)驱动,当进水COD为400mg/L时单位VSS消耗的PHA最多.混合碳源浓度通过影响碳源的好氧代谢,使微生物体内储能物质的积累/转化量不同,进而影响系统的脱氮除磷性能.  相似文献   

9.
同时硝化/反硝化除磷工艺的脱氮除磷效能   总被引:1,自引:0,他引:1  
为实现同时硝化/反硝化除磷(SNDPR),在序批式活性污泥反应器(SBR)中,采用厌氧/好氧和厌氧/缺氧/好氧2种运行模式驯化污泥,并考察了厌氧/低氧模式下SNDPR过程中COD、PHB、TP、TN、DO和电化学参数的变化规律。结果表明,经2阶段驯化,反硝化聚磷菌比例提升至85.9%,硝化速率达5.97 mg(/L.h),实现了反硝化除磷菌和硝化菌的良好共存;在厌氧/低氧模式下,SNDPR对低碳城市污水具有良好脱氮除磷效果,TP、TN和COD去除率达到93.7%、79%和87.7%;PHB与COD降解、TN降解和TP吸收有良好的相关性,也是SNDPR过程的碳源驱动力;pH和ORP曲线上"谷点"预示厌氧释磷结束,pH曲线"折点"指示SNDPR结束。  相似文献   

10.
单一好氧环境下的强化生物除磷研究   总被引:1,自引:0,他引:1  
李菲菲  袁林江  陆林雨 《环境科学》2010,31(9):2113-2117
将乙酸钠为单一碳源、厌氧/好氧交替、具有较好除磷效果的传统生物除磷SBR系统,改为单一的好氧SBR运行方式,发现改变后的SBR系统仍可取得较好的除磷效果,除磷率最高达73.9%,最低约40%,平均维持在50%左右.这种现象可以维持长达80个周期.污泥含磷率由最初的1.43%增加到6.56%.对污泥微生物胞内PHB和糖原进行测定,结果表明此系统中微生物PHB和糖原在VSS中含量分别约为27 mg/g和26 mg/g,二者含量在好氧过程中都基本保持不变.通过对反应过程中碳源消耗与磷吸收关系的分析,认为该单一好氧条件下的生物除磷机制是由于长期以乙酸钠为唯一碳源下,试验系统中活性污泥被驯化,在胞内聚磷颗粒含量容纳能力范围内还可以在好氧环境下以乙酸钠氧化产生的ATP为能量进行磷吸收所致.  相似文献   

11.
李洪静  陈银广  顾国维 《环境科学》2007,28(8):1681-1686
2个实验室规模的序批式反应器(SBRs)在厌氧-低氧(0.15~0.45 mg·L-1)条件下运行,以比较丙酸的加入对同时生物除磷脱氮系统的影响.结果表明,无论是丙酸与乙酸的混合酸(碳摩尔比为1.5/1)作为碳源(SBR1),还是乙酸作为单独碳源(SBR2),系统都发生同步硝化反硝化和磷的去除(SNDPR),并且氨氮被全部氧化,系统中没有亚硝酸盐的大量累积.与SBR2相比,SBR1中厌氧阶段磷释放量少,聚羟基戊酸(PHV)合成量高,好氧末磷剩余量少,硝态氮累积少,因此SBR1中总氮和总磷的去除率(分别为68%和95%)比SBR2(分别为51%和92%)高,加入丙酸有助于SNDPR系统保持较好的除磷、脱氮效果.  相似文献   

12.
为了解厌氧/好氧运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步硝化反硝化(SND)的耦合脱氮除磷特性,以实际低C/N (约为3.5)生活污水为处理对象,先通过调控进水C/N考察其对EBPR启动和聚磷菌(PAOs)富集情况的影响,再通过调控好氧段DO浓度考察其对系统脱氮除磷性能、SND率及碳源转化特性的影响.结果表明,DO浓度为2.0mg/L,当进水C/N由3.2提高至7.5并降至3.8时,反应器出水PO43--P浓度由3.9mg/L逐渐降至0.5mg/L以下,且厌氧释磷量(PRA)由3.3mg/L逐渐升高至约30mg/L.此后,当DO浓度逐渐降至约1.0mg/L时,SND现象愈加明显,且其与EBPR耦合使得系统总氮(TN)和PO43--P去除率分别提高至85%和94%.但当DO浓度约为0.5mg/L时,硝化过程进行不完全,亚硝酸盐积累较为明显,耦合系统中存在同步短程硝化反硝化现象.DO浓度为约1.0mg/L时,系统具有最高的脱氮除磷性能.此外,当DO浓度由2.0mg/L降至0.5mg/L时,PAOs较聚糖菌(GAOs)在厌氧内碳源储存中的贡献逐渐减小(PPAO,An由30.3%逐渐降至20.2%),PRA降低约7mg/L.DO浓度为1.0~1.5mg/L最有利于系统厌氧段内碳源PHA的合成.  相似文献   

13.
UASB1-A/O-UASB2深度处理垃圾渗滤液   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统垃圾渗滤液生物处理TN去除率低、投加碳源成本高的问题,采用UASB1-A/O-UASB2(单级上流式厌氧污泥床+缺氧/好氧+后置上流式厌氧污泥床)工艺处理实际垃圾渗滤液,实现NH4+-N和TN的同步深度脱除,并且定量解析了A/O反应器实现并维持稳定短程硝化的影响因素. 结果表明:以V(垃圾渗滤液)∶V(生活污水)为1∶5的混合液作为进水,其ρ(CODCr)、ρ(TN)和ρ(NH4+-N)分别为1 700~1 800、660~700和650~680 mg/L,最终出水CODCr、TN和NH4+-N去除率均在95%以上,出水ρ(TN)为38 mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. 在好氧反应器中,FA(游离氨)与FNA(游离亚硝酸)对NOB(硝化细菌)的联合抑制作用是实现NO2--N积累率稳定在80%以上的主要原因,而产生的NO2--N和NO3--N可在UASB2中以难降解的有机物为碳源,通过反硝化途径被去除. 研究显示,组合系统可实现对TN的深度去除.   相似文献   

14.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

15.
环流曝气塔中生物脱氮过程的研究   总被引:3,自引:0,他引:3  
利用环流曝气塔进行同时硝化/反硝化(sND)脱氮实验.实验中,分别采用不同降解性能的碳源以及采用不同的碳源投加方式,研究反应器内的脱氮过程,监测处理过程中NOx--N浓度和溶解氧DO的变化.实验显示,在COD 800mg/L+800mg/L的分批加料方式下,NH4+-N的降解得到加强,出水中NH4+-N浓度低于3mg/L;利用较难降解物质作为碳源时,利于反应器内低溶解氧条件的出现,促进了反硝化的进行,实验在采用醇类碳源时脱氮效果好于葡萄糖的情况.  相似文献   

16.
为了解决垃圾渗滤液的脱氮难题,通过改变SBR的操作模式对渗滤液进行处理.同时,试验重点考察了操作模式、曝气时溶解氧、过曝气以及渗滤液碳氮比对工艺脱氮效果的影响.研究结果表明,采用改进SBR对渗滤液进行处理,在原水COD浓度为4000mg/L左右,氨氮浓度为1000mg/L左右,总氮浓度在1100mg/L左右的条件下,不添加任何碳源,出水COD小于500mg/L,氨氮浓度小于5mg/L,总氮浓度小于40mg/L,COD、氨氮和总氮的去除率分别达到了85%、99%和95%以上.影响因素试验表明,反硝化菌中的PHA含量是影响系统脱氮效率的关键.曝气时较高的溶解氧、曝气前的厌氧搅拌以及尽量减少过曝气将提高系统的脱氮效率.同时,只要渗滤液碳氮比大于4,系统均可以对渗滤液实现深度脱氮.  相似文献   

17.
针对猪场粪尿厌氧消化液在后续生物处理过程中碳源,碱度的严重失衡问题,采用"缺氧(A1)+曝气(O1)+缺氧(A2)+曝气(O2)"的分步进水序批式反应器(SFSBR)处理,以实现碳源,碱度的体系内自平衡利用.通过改变A1,A2段的补碳量(采用定量的猪场粪尿原液,分别以1:1,1:3和3:1的体积比在反应器每个周期的A1,A2阶段启动时补碳,分别简称工况I,Ⅱ,Ⅲ),研究原液补碳模式对处理过程脱氮除磷特性的影响.结果表明,3种补碳模式均实现了短程硝化反硝化脱氮,反应器内pH值均稳定在8.5左右,NH4+-N去除率均达到95%以上.原液补碳直接影响反硝化过程,工况I,Ⅱ条件下A2段反硝化速率分别为2.19和2.15mg/(g·h),均约为工况Ⅲ A2段的1.6倍.不同工况下原液补碳对A段释磷和O段吸磷有显著差异,工况I和Ⅲ条件下SFSBR除磷效果更佳,出水TP浓度分别为7.9和6.4mg/L,去除率分别达到84.4%和87.3%,相较于工况Ⅱ分别提高了9.5%和12.4%.综合考虑脱氮除磷,有机物降解以及碳源/碱度自平衡控制,工况I为最佳补碳模式,系统出水COD,NH4+-N和TP浓度分别为360,10.6和7.9mg/L,相应的去除率分别为74.9%,98.6%和84.4%.研究表明,采用A1/A2段原液添加比为1:1的补碳模式(即工况I)能在碳源/碱度自平衡的基础上实现猪场粪尿厌氧消化液的高效脱氮除磷.  相似文献   

18.
固定化硝化菌去除废水中氨氮工艺的研究   总被引:36,自引:2,他引:34  
采用聚乙烯醇-硼酸包埋固定化法,选用PVA为包埋载体,粉末活性炭作为无机载体,包埋固定A/O生物脱氮系统中的再经驯化过的硝化污泥,制成固定化硝化菌颗粒。  相似文献   

19.
酒精废水消化液生物硝化和脱氮试验   总被引:1,自引:0,他引:1  
杨健  周小波 《环境工程》2006,24(1):27-30
酒精糟液厌氧消化液CODCr浓度为3500~4300mgL,BOD5浓度为1500~2100mgL,TN浓度为400~700mgL,NH3N浓度为300~600mgL。采用SBR反应器对该消化液进行生物脱氮试验,对反应器的有机负荷、氨氮负荷、脱氮效果、脱氮过程中氮形态的变化以及碳源提供等进行了研究分析。试验结果表明,当消化液碳源充足,SBR充水比λ=0.35,缺氧时间3h以及BOD5污泥负荷0.26~0.32kgkg·d条件下,SBR处理出水CODCr598~632mgL,BOD560~100mgL,氨氮6~9mgL,总氮200~216mgL,总氮去除率为60%左右。该处理系统中缺氧段反应时间仅为3h,却承担70%~75%的CODCr总去除负荷,显著提高了该系统的有机负荷和氨氮负荷。在消化液碳源不足的条件下,可投加乙酸钠作为生物脱氮的外碳源,投加量宜为500mgL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号