首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
基于长江三角洲江苏、安徽、浙江和上海地区2008年粮食产量的统计年鉴,结合作物谷草比、排放因子等估算了上述地区2008年秸秆焚烧排放污染物清单,重点完善了各县级市污染物排放.结果表明2008年江苏、安徽、浙江和上海地区SO2、NOx、CO、CO2、PM2.5、BC、OC、NH3、CH4、NMVOC的排放总量分别为14.28、86.01、1 744.56、36 893.03、517.54、11.74、114.63、19.93、89.37和208.57 kt.江苏中部和北部、安徽北部地区秸秆露天焚烧污染物排放较多,而江苏南部和浙江地区污染物排放量较少.将建立的秸秆露天焚烧排放污染物清单应用于WRF-CMAQ空气质量模式,结果表明,考虑秸秆焚烧排放源后,对PM10、CO等大气污染物的模拟能力大幅提高,模拟浓度比使用原始排放源分别提高42%和28%,模拟浓度与实测浓度的相关系数分别提高0.25和0.17,模拟值较使用原始排放源更加贴近实测值.  相似文献   

2.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

3.
海峡西岸地区人为源大气污染物排放特征研究   总被引:2,自引:3,他引:2  
黄成 《环境科学学报》2012,32(8):1923-1933
采用以"自下而上"为主的方法建立了2007年海峡西岸地区的人为源大气污染物排放清单.计算结果显示,海西地区人为源SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为69.5×104、96.1×104、413.1×104、93.9×104、40.6×104、85.0×104和28.5×104t.电厂和工业燃烧设施分别占SO2排放的48%和39%,以及NOx排放的51%和25%.水泥、砖瓦等制造过程贡献了约51%的PM10排放和36%的PM2.5排放.秸秆燃烧、加油站和涂料等VOCs面源分别占到其排放总量的27%、15%和4%.NH3的主要排放源为畜禽养殖和氮肥施用等农业部门,占到总排放量的89%.海西地区的单位面积大气污染物排放量仅相当于长三角地区的25%左右,略高于全国平均水平.该地区人为源和天然源VOCs排放比重分别占56%和44%,人为源VOCs排放比重低于全国大部分地区.海西大气污染高排放地区主要集中在沿海一带,以泉州、潮汕、福州和温州等地区为主,建议"十二五"发展过程中,重点关注上述高排放地区,限制重点排放源的发展,开发低耗能、低污染的发展模式.  相似文献   

4.
江苏省一次重霾污染天气的特征和机理分析   总被引:20,自引:2,他引:18       下载免费PDF全文
利用PM10, SO2,O3,NH3, NOx,CO等6种大气成分浓度数据、常规气象观测数据和天气图资料,结合HYSPLIT4后向轨迹模式,对2008年10月28~30日发生在江苏省的一次大面积重霾污染天气的特征和成因进行了综合分析.结果表明,此次重霾污染天气过程观测到的PM10, NOx,CO最大地面浓度分别达到0.553, 0.170, 2.738mg/m3,水平能见度达到1km以下.其中城市中CO和NOx浓度较郊区高,而SO2和O3则较低.该污染事件与大范围秋收秸秆集中燃烧,造成大量污染物排放有密切关系.平稳的高空环流形势、暖平流、地面高压场分布为重霾污染天气的发生、发展提供了有利的气象条件,地面表现为稳定的大气层结、静小风和低湿环境,非常不利于污染物的扩散.后向轨迹计算分析表明,造成此次重霾污染天气的气团主要来自河南中东部、苏北和安徽等重要产粮地区,长距离输送对区域霾污染产生重要影响.  相似文献   

5.
珠江三角洲非道路移动源排放清单开发   总被引:46,自引:18,他引:28  
根据收集到的珠江三角洲非道路移动源活动水平数据,采用适合各类非道路移动源污染物排放量的估算方法和排放因子,建立了珠江三角洲地区2006年非道路移动源排放清单.结果表明,珠江三角洲地区2006年非道路移动源排放SO2为6.52×104t,NOx为1.24×105t,VOC为4.54×103t,CO为2.67×104t,PM10为4.51×103t.其中船舶为最大的SO2、NOx、CO和PM10排放贡献源,分别占非道路移动源排放总量的96.4%、73.8%、39.4%和50.5%.在船舶排放源中,SO2、NOx、VOC、CO和PM10排放量的89.8%、81.8%、77.3%、79.5%和81.7%来自货轮和散装干货船.非道路移动源已成为该地区第三大SO2和NOx排放贡献源,分别占珠江三角洲大气污染源SO2和NOx排放总量的8.6%和13.5%.  相似文献   

6.
基于调查的中国秸秆露天焚烧污染物排放清单   总被引:4,自引:0,他引:4       下载免费PDF全文
基于2010年初农村能源消费情况的问卷调查,获得全国分省秸秆露天焚烧比例,在此基础上确定秸秆露天焚烧的活动水平,采用排放因子法建立中国秸秆露天焚烧的污染物排放清单. 结果表明,中国农村秸秆露天焚烧平均比例为20.8%. 2009年全国28个省区(不包括西藏自治区、天津市、上海市、港澳台地区,下同)秸秆露天焚烧的PM2.5、BC、OC、SO2、NOx、CO、NMVOC、NH3、CH4和CO2排放量分别138.1×104、6.4×104、41.1×104、8.7×104、41.8×104、594.6×104、94.4×104、8.0×104、44.2×104和14 355.4×104 t. 稻谷、玉米和小麦是露天焚烧的三大作物秸秆,其对污染物排放的贡献合计约为87%. 秸秆露天焚烧排放量最高的前3位分别为湖南省、河南省和安徽省, 秸秆露天焚烧比例分别43.1%、20.8%和39.7%. 污染排放的高值区主要集中在华北和华中地区. 95%置信区间下的不确定性分析结果显示,PM2.5、BC、OC、SO2、NOx、CO和NMVOC排放的不确定性范围分别为-60%~83%、-78%~147%、-73%~135%、-48%~75%、-49%~78%、-91%~155%和-67%~94%. 2015年初对六省(湖南省、广东省、江苏省、河南省、黑龙江省和辽宁省)农村能源消费调查的结果显示,2014年江苏省、湖南省和广东省的秸秆露天焚烧比例较2009年均有下降,而辽宁省、黑龙江省和河南省则相对上升. 研究显示,秸秆禁烧政策已取得初步成效,建议国家有关部门进一步加大秸秆禁烧政策的推行力度,完善相关政策措施.   相似文献   

7.
李莉  安静宇  卢清 《环境科学研究》2015,28(11):1653-1661
为了解长三角地区清洁空气行动计划实施后区域PM2.5的改善效果,在建立2012年长三角地区大气污染物排放清单的基础上,依据上海、江苏、浙江和安徽三省一市行动计划细则,对2013—2017年各省、直辖市主要大气污染物减排量进行测算.利用WRF(天气研究和预报模式)-CMAQ(通用多尺度空气质量模型)系统,模拟研究了清洁空气行动计划实施后可能带来的区域PM2.5改善效果.结果表明:清洁空气行动计划涉及到的能源、工业、交通等六大领域减排任务,按照减排力度强、中、弱3种方案测算,预计长三角地区SO2减排总量分别为74.5×104、53.8×104和34.4×104t;NOx减排总量分别为108.7×104、83.9×104和61.1×104t;一次PM2.5减排总量分别为40.3×104、26.1×104和14.6×104t;挥发性有机污染物(VOCs)的减排总量分别为98.2×104、57.0×104和23.5×104t.模拟评估结果表明,在弱、中、强3种减排方案下,长三角地区国控点ρ(PM2.5)年均值预计比基准年(2013年)分别降低(4.4±1.1)、(8.1±2.4)和(12.5±3.9)μg/m3,降幅分别达到8.7%±2.2%、15.9%±4.7%和24.3%±7.7%.长三角地区须在清洁空气行动计划实施细则指导下,控制新增量,并稳步严格推进前体物强力减排,才能实现2017年预期空气质量改善目标.  相似文献   

8.
西宁市生物质燃烧源大气污染物排放清单   总被引:2,自引:2,他引:0  
高玉宗  姬亚芹  林孜  林宇  杨益 《环境科学》2021,42(12):5585-5593
本研究根据调查的西宁市生物质燃烧源活动水平数据,采用排放因子方法,建立了 2018年西宁市生物质燃烧源9种大气污染物的排放清单,并分析了清单的时空分布特征和不确定性.结果表明,西宁市2018年生物质燃烧源CO、NOx、SO2、NH3、VOCs、PM2.5、PM10、BC 和OC 的排放量分别为 11 718.34、604.41、167.80、209.72、1 617.97、2 054.04、2 135.04、281.07和 1 224.78 t.秸秆露天焚烧 CO、NOx、VOCs、PM2.5、PM10、BC 和OC 的排放对生物质燃烧源的排放贡献率最高;其中,秸秆露天焚烧NOx、VOCs和CO的贡献率分别为72.35%、63.94%和53.18%.户用生物质炉NH3和SO2的排放对生物质燃烧源的贡献率最大,分别为41.49%和42.05%.生物质燃烧源大气污染物排放地区分布不均衡,主要集中于大通县和湟中区.生物质燃烧源9项污染物的排放量在1、2、3、10、11和12月较大,占比在5%~33%.蒙特卡罗模拟结果表明,在95%置信区间下,不确定度最高的是森林和草原火灾的PM2.5排放,不确定度为-26.71%~29.78%.  相似文献   

9.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

10.
2013年12月初长江三角洲及周边地区重霾污染的数值模拟   总被引:6,自引:0,他引:6  
运用WRF-CMAQ模型模拟了2013年12月1~9日长江三角洲及周边地区的一次重霾污染过程.初步探究灰霾天气下大气细颗粒物(PM2.5)的时空分布特征和区域输送过程,并定量研究了外部源区域输送和本地源对长江三角洲地区PM2.5的贡献.结果表明:模式能够合理再现灰霾天气下长江三角洲及周边地区PM2.5的时空分布特征和演变规律.静稳天气下大气细颗粒物仍然存在着显著的区域输送.污染期间来自安徽、山东南部、苏北地区的跨界输送对长江三角洲区域PM2.5的贡献率分别为3.5%~24.9%、0.14%~30.0%、0.03%~17.5%.整个污染期间本地贡献占49%左右,本地贡献和外地贡献基本相当.  相似文献   

11.
秸秆燃烧释放大量细小颗粒物(Fine Particulate Matter),对大气环境、生态系统和人类健康有重要影响.该研究基于2000-2014年中国华东地区农作物产量统计数据,估算各区域秸秆产量及室内外农作物秸秆燃烧总量.并运用排放因子法,估算15年间华东地区农作物秸秆燃烧PM2.5排放总量.研究结果表明,华东地区秸秆产量及燃烧总量分别为:2033.2 Mt和32678.59 Wt,PM2.5的排放总量为851.95 Wt.此外,PM2.5排放在时间和空间上不均衡.卫星火点监测数据显示,农田秸秆燃烧密集区域主要分布在山东南部、安徽北部、江苏和浙江东北部及上海市大部分地区;单位网格PM2.5最大的排放量多集中在山东、安徽北部、江苏中部和北部、浙江东北部和上海区域.时间序列上,山东、江苏和安徽呈显著增长趋势,上海、福建和浙江呈显著降低趋势.稻谷、小麦、玉米、豆类和油菜秸秆燃烧对污染物PM2.5的贡献率分别为32.45%、30.18%、18.95%、3.77%和14.65%.农作物秸秆燃烧释放PM2.5与工业粉尘的排放比变化趋势表明山东、安徽和江苏总体呈上升趋势;上海、福建和浙江总体保持平稳趋势.通过对华东地区农作物秸秆燃烧释放PM2.5的时空变化研究,为更好的揭示秸秆燃烧对区域环境的影响提供数据支持.  相似文献   

12.
北京市燃煤源排放控制措施的污染物减排效益评估   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析北京市燃煤源排放控制措施的污染物减排效益,基于MEIC(中国多尺度排放清单模型),采用情景分析法,评估了北京市电厂能源清洁化与末端治理、燃煤锅炉改造和城区平房区居民采暖改造等措施的污染物减排效益.结果表明,相对于无控情景,2013年北京市电厂能源清洁化与末端治理减少PM2.5、PM10、SO2和NOx排放量为1.28×104、2.10×104、5.13×104和4.98×104 t,分别占无控情景的85%、86%、87%、74%;北京市燃煤锅炉改造减少PM2.5、PM10、SO2、NOx排放量为1.09×104、2.68×104、11.64×104和5.81×104 t,分别占无煤改气情景的83%、89%、83%、83%;北京市老旧平房区的居民采暖改造减少PM2.5、PM10、SO2和NOx排放量分别为630、870、2 070和790 t,均占无煤改电情景的8%.研究显示,北京市从1998年开始采取的各种减排措施有效地减少了污染物的排放,对北京市空气质量改善具有重要意义.   相似文献   

13.
江苏省内河船舶大气污染物排放清单及特征   总被引:2,自引:2,他引:0  
徐文文  殷承启  许雪记  张玮 《环境科学》2019,40(6):2595-2606
基于船舶签证、过闸数据以及AIS数据,采用船舶引擎功率的方法建立了江苏省内河船舶大气污染物排放清单.结果表明,2014年江苏省内河船舶共排放NO_x18. 71万t、SO_25. 13万t、PM_(2.5)0. 82万t、PM_(10)1. 10万t、HC 0. 64万t、CO 1. 67万t和CO_21 051. 13万t;对于内河船舶(不计长江),干货船污染物排放量最大,吨位范围200~600 t的污染物排放量最高,船舶正常航行工况下污染物排放量最高;对于长江江苏段抵港船舶,非集装箱货轮污染物排放量最高,装卸货工况下污染物排放量最高,其次是巡航状态,对于不同动力单元,主机和辅机是主要排放单元;对于长江江苏段过境船舶,非集装箱货轮的污染物排放量最高,其次为油轮,缓慢行驶状态下各污染物排放量均为最高,对于不同动力单元,SO2、PM_(2.5)和PM_(10)主机排放量高于辅机;京杭运河苏北段航道单位航道长度大气污染物排放量较大,苏南航道次之;江苏省内河船舶排放受时间影响较小,除2月排放占比略小外,其余月份排放占比基本较为均匀,均在8%~10%左右.  相似文献   

14.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

15.
我国钢铁工业一次颗粒物排放量估算   总被引:2,自引:0,他引:2  
针对我国钢铁工业生产工艺以及颗粒物控制技术的分类,建立了一个细化到排放节点的自下而上的颗粒物排放模型.结合我国钢铁工业各地区活动水平以及颗粒物控制技术分布的历史变化趋势分析,利用此模型计算了2006—2012年我国钢铁工业一次颗粒物的排放系数和排放量.模型计算结果显示,2006年以来,我国钢铁工业颗粒物控制水平不断提高,PM_(2.5)、PM_(2.5)~10和PM10的排放系数分别降低了21.2%、19.3%和19.0%.钢铁工业一次颗粒物排放量在2006—2011年间持续增长,2011年TSP排放量为602×104t,PM10排放量为200×104t,PM_(2.5)排放量为124×104t;2012年排放量出现下降,TSP排放量为561×104t,PM10排放量为187×104t,PM_(2.5)排放量为116×104t.2012年我国钢铁工业一次PM_(2.5)排放量中的有组织排放占39.5%,无组织排放占60.5%;除加严有组织源管控之外,减少颗粒物无组织排放,对于钢铁工业颗粒物排放控制也非常重要.我国钢铁工业颗粒物排放量分布不均衡,河北、山东、江苏、辽宁、山西5个省的排放超过全国总排放的50%.  相似文献   

16.
太原市居民生活燃煤大气污染物排放清单研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了科学计算居民生活燃煤对大气污染物排放的贡献率,建立了太原市居民生活燃煤的大气污染物排放清单.利用高分辨率遥感卫星影像、DEM(数字高程模型)和GIS(地理信息系统)对太原市平房空间分布及面积进行了解译,得到2016年太原市平原、山区、城乡区域平房面积.对平原农村、山区农村、城中村典型区域进行实地调查,统计不同区域户均平房面积和生活燃煤使用量,估算得到了平原农村、山区农村、城中村的生活燃煤使用量.结合相关文献测算的排放因子,计算太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量.结果表明:2016年太原市有22.8×104户燃煤散烧居民,2016年燃煤消耗量为109.6×104 t,平原和城乡居民是主要的生活燃煤用户也是居民生活燃煤大气污染物的主要排放源;太原市居民生活燃煤散烧的PM10、PM2.5、SO2、NOx、VOCs、CO、OC、EC排放总量分别为9 666.7、7 518.6、8 110.4、1 753.6、657.6、153 549.6、3 419.5、2 882.5 t;2016年太原市清徐县和太原市城区居民煤炭消耗量合计达97.9×104 t,占全年燃煤总消耗量的88%.研究显示,太原市应加快煤改气、煤改电和集中供热建设,进一步推广清洁能源以期减小居民生活燃煤大气污染.   相似文献   

17.
四川省秸秆露天焚烧污染物排放清单及时空分布特征   总被引:10,自引:4,他引:6  
何敏  王幸锐  韩丽  冯小琼  毛雪 《环境科学》2015,36(4):1208-1216
根据收集的活动水平数据,采用排放因子法建立了四川省2012年秸秆露天焚烧污染物排放清单,并分析了污染排放的时空分布特征.结果表明,2012年四川省秸秆露天焚烧共排放SO2、NOx、NH3、CH4、NMVOC、CO、PM2.5、EC以及OC分别为1 210、12 185、2 827、20 659、40 463、292 671、39 277、1 984以及10 215 t;水稻、小麦、玉米、油菜是四大主要的焚烧作物秸秆,对污染物的总贡献率约为88%~94%;秸秆露天焚烧受农作收获的影响,全年的排放主要集中在7~8月,而5月是上半年的一个排放小高峰;秸秆焚烧排放的高值地区主要分布在成都平原、川北地区以及川南地区,川西地区排放分布相对较少;本清单的不确定性主要来自排放因子及秸秆焚烧量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号