首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
磷酸活化纺织固体废弃物制备活性炭及表征   总被引:2,自引:0,他引:2  
以纺织固体废弃物为原料,磷酸为活化剂,采用一步活化法制备活性炭。采用正交实验研究了磷酸浓度、浸渍时间、活化温度和活化时间对活性炭吸附性能的影响,得到最佳工艺条件,借助氮吸附等温线、BET方程、BJH方程、SEM和FTIR分析了活性炭孔结构和表面化学性质。结果表明:最佳工艺条件为磷酸浓度40%(质量分数)、浸渍时间24h、活化温度500℃、活化时间30min。最佳条件下活性炭碘值为967mg/g,亚甲基蓝值为112mL/g,BET比表面积为1107.51m2/g,总孔容积为1.239cm3/g,中孔容积为1.024cm3/g,中孔占82.65%。活性炭表面具有羟基、羰基、内酯基和多种含磷官能团。  相似文献   

2.
水蒸气法制备污泥质活性炭的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以污泥和木屑为原料,采用管式炉水蒸气活化法,对流化床热解炉制得的热解炭进行制备活性炭的研究,分析了活化因素对活化效果的影响、亚甲基蓝在活性炭上的吸附平衡和动力学、污泥活性炭浸出液中重金属的含量及其孔结构等性能.实验结果表明:随着活化温度的升高、活化时间的延长和水蒸气流量的增加,活性炭的得率不断降低,亚甲基蓝的吸附值先升高后降低;污泥中添加20%木屑时制得的活性炭的吸附性能是纯污泥质活性炭的一倍多; Langmuir吸附等温线模型、准二级反应模型能够比较准确地描述亚甲基蓝在污泥活性炭上的吸附相平衡及吸附过程,平衡时活性炭对亚甲基蓝单层最大吸附量为71.43mg/g;污泥质活性炭的孔结构以过渡孔为主;浸出液中只有少量的重金属.  相似文献   

3.
采用泥炭为原料,氢氧化钾为活化剂制备了粉末活性炭,并研究其对水中亚甲基蓝的吸附性能。选取泥炭秸秆比、活化时间、活化温度和碱炭比为因素,通过正交试验确定了最佳工艺条件,即泥炭秸秆比为2∶1,活化时间为1 h,活化温度700℃,碱炭比为1∶3。吸附实验结果表明,该泥炭复配玉米秸秆为原料制备的粉末活性炭对水中亚甲基蓝的吸附效率高,最大吸附量为898.2 mg/g,Freundlich吸附等温式的拟合效果优于Langmuir吸附等温式,表明主要吸附为多层吸附。准二级动力学模型比准一级动力学模型能更好地拟合活性炭吸附亚甲基蓝的动力学规律。  相似文献   

4.
铜藻基载铁活性炭的制备及其对亚甲基蓝的吸附特性研究   总被引:1,自引:1,他引:0  
以一种大型海藻——铜藻为原料,Fe Cl3·6H2O为活化剂,采用超声浸渍-原位合成法制备了铜藻基载铁活性炭(Fe/SAC),并以活性炭得率和亚甲基蓝吸附值为指标,通过正交法考察了活化温度、活化时间和浸渍比的影响.同时,采用X射线衍射、扫描电镜和比表面积分析仪对最优结果进行表征,并考察了Fe/SAC吸附亚甲基蓝的热力学与动力学特性.结果表明,Fe/SAC的最优制备工艺条件为活化温度600℃、活化时间1 h、浸渍比1∶1,此时的活性炭得率为39.5%,亚甲基蓝吸附值为255.67 mg·g~(-1);最优工艺条件下制得的Fe/SAC比表面积为558.31 m2·g~(-1),其负载的铁组分主要为Fe3O4和Fe O;亚甲基蓝在Fe/SAC上的吸附过程符合准二级动力学模型,Langmuir等温吸附模型能够很好地描述吸附平衡过程,该吸附是熵增加的自发吸热(ΔS0、ΔG0、ΔH0)过程,升温有利于吸附.  相似文献   

5.
以牛粪为原料,采用KOH活化法制备活性炭,并考察了浸渍比、活化剂浓度、活化时间和活化温度等不同制备条件对牛粪活性炭样品性能的影响.实验结果表明,在浸渍比1∶4、KOH质量分数35%、活化时间60min、活化温度700℃条件下制备的活性炭性能最佳,制得的活性炭比表面积为979.8m2·g-1,碘吸附值可达796.37mg·g-1,亚甲基蓝吸附值可达150.30mg·g-1.最后,将制备的牛粪活性炭应用于对Cr(Ⅵ)的吸附,研究了最佳工艺条件下制备的活性炭吸附Cr(Ⅵ)的适宜条件.结果表明,在投加量为8g·L-1时、吸附时间90min、pH值为5和较低温度的适宜条件下,自制牛粪活性炭对Cr(Ⅵ)的吸附量最大.  相似文献   

6.
实验利用提取茶多酚后的废茶以微波磷酸活化法制备活性炭,研究磷酸活化剂浓度、微波功率、微波辐照时间、浸渍比等因素对制备的活性炭亚甲基蓝吸附值的影响。分别通过单一因素分析及正交实验,找到制备活性炭的最佳条件:微波功率700W、辐照时间8min、磷酸浓度20%、磷酸/样品浸渍(质量)比3:1。利用该最佳条件制备的活性炭,验证实验表明:亚甲基蓝吸附值均〉75.12mg/g,活性炭平均回收率达到65.28%。  相似文献   

7.
为通过物理活化法制备羊骨活性炭,采用响应曲面(Response surface methodology,RSM)实验设计,以活化温度、活化时间、CO2流量为试验因素,以碘吸附值为响应值,建立数学模型,工艺条件进行优化。结果表明:最佳工艺条件为活化温度476.05℃、活化时间9.34 min、CO2流量159.4 mL/min,在此条件下碘吸附值为411 mg/g;通过对碘吸附值曲面方程和二次多项回归方程解逆矩阵得知该方程的预测值与实际值之间具有较好的拟合度。  相似文献   

8.
以花生壳为原料通过微波辐照制备了具有高比表面积并含有大量中孔的活性炭。讨论了活化剂类型、浸渍时间、浸渍比、活化剂浓度、微波功率和辐照时间对花生壳活性炭制备的影响。结果表明:相较磷酸和氢氧化钠,采用氯化锌活化剂制备的花生壳活性炭有更好的碘吸附性能;在浸渍浓度为40%,浸渍比为1∶6,浸渍时间为48 h,微波功率为500 W,辐照时间为6 min的条件下,制备的花生壳活性炭碘吸附值和亚甲基蓝吸附值分别为(898.6±12.8)mg/g和(46.2±3.8)mg/g;微波辐照工艺制备的活性炭,其碘吸附与亚甲基蓝吸附能力均优于马弗炉工艺;花生壳活性炭的碘吸附与亚甲基蓝吸附能力均优于市售活性炭。  相似文献   

9.
亚临界水解预处理稻草秸秆制备活性炭及表征   总被引:1,自引:0,他引:1  
董宇  申哲民  雷阳明  王茜  刘婷婷 《环境科学》2012,33(5):1753-1759
通过以稻草秸秆的亚临界预处理中产生的残渣作为实验材料,以氯化锌作为活化剂制备具有吸附性能的活性炭,研究了活化温度,活化时间,浸渍时间以及浸渍比等4个因素对生成活性炭的性能影响,设计正交实验制备活性炭.以低温液氮吸附测定活性炭的比表面积和孔容、孔径分布,以扫描电子显微镜(SEM)观测活性炭表面形貌,并以亚甲基蓝(MB)作为吸附质,研究了活性炭对亚甲基蓝的吸附动力学和吸附等温线.结果表明,活化温度900℃,活化时间60 min,浸渍比1∶5,浸渍时间12 h,当氯化锌质量分数为20%时,制得相应活性炭的碘值为1 122.79 mg.g-1,亚甲基蓝吸附值为136.50 mg.g-1.亚甲基蓝在活性炭上的吸附基本符合Langmuir方程,且准二级动力学模型能很好地描述活性炭对亚甲蓝的吸附过程;热力学研究表明,吸附吉布斯自由能(ΔG0)<0,而焓变(ΔH0)>0,说明吸附为吸热的自发反应过程,升温有利于吸附.  相似文献   

10.
以CO_2为活化剂,甘蔗渣为原料制备甘蔗渣活性炭。探讨煅烧条件、活化温度、活化时间及CO_2流量对生物吸附剂吸附性能和得率的影响,并分析甘蔗渣活性炭的结构。结果表明,在煅烧温度700℃、活化温度850℃、活化时间40min及气体流量150 mL/min条件下制备的甘蔗渣活性炭性能最佳,其碘吸附值达到1089.76mg/g,得率34.27%;活化后甘蔗渣活性炭的中孔孔隙增加,吸附性能增强。该方法制得的活性炭性能优于化学法,且更为简单环保。  相似文献   

11.
李刚  李伟光  王广智  李鑫  公绪金 《环境工程》2012,(Z2):489-493,568
以城市生活污水厂脱水车间污泥为原料,采用化学活化法(ZnCl2为活化剂)在活化剂浓度为45%、活化温度为600℃、浸渍温度为45℃、活化时间为50min条件下制备污泥基活性炭。对污泥基活性炭进行了孔结构、扫描电镜(SEM)、红外光谱(FTIR)、XRD等表征分析。结果表明:该条件下制备出的污泥基活性炭碘吸附值为427.51mg/g,比表面积为329.48m2/g,大孔、中孔、微孔容积分别为0.19,0.12,0.15cm3/g。平均孔径为3.953nm。将其应用于生活污水处理,考察了污泥基活性炭投加量、pH、吸附时间对其吸附性能的影响。  相似文献   

12.
Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal. A three-stage activation process (drying at 200℃, pyrolysis in N2 atmosphere, followed by CO2 activation) was used for the production of activated samples. The effects of carbonization temperature (409-4500℃), activation temperature (700-900℃), and activation time (1-2.5 h) on the physicochemical properties (weight-loss and BET surface) of the prepared carbon wereinvestigated. Adsorptive removal of mercury from real flue gas onto activated carbon has been studied. The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (Hg^v: 38.7% vs. 53.5%, Hg^0: 50.5% vs. 68.8%), although its surface area is around 10 times smaller, 89.5 m^2/g vs. 862 m^2/g. The low cost activated carbon can be produced from chicken waste, and the procedure is suitable.  相似文献   

13.
An activation process for developing the surface and porous structure of palygorskite/carbon(PG/C) nanocomposite using ZnC l2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), field-emission scanning electron microscopy(SEM), and Brunauer–Emmett–Teller analysis(BET) techniques. The effects of activation conditions were examined,including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of C_C and C–H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold(1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.  相似文献   

14.
以污水处理厂剩余污泥为原料,以氯化锌和氯化铜为复合活化剂,采用低温炭化及中温活化方法制备了污泥活性炭。经正交优化得到最佳制备条件为:活化温度为534℃,活化时间为60 min,ZnCl2浓度为3.0 mol/L,CuCl2浓度为0.3 mol/L,碘吸附值达到534.0 mg/g。所得污泥活性炭含有大量微孔,同时也含有部分中孔和大孔,BET比表面积为784.89 m2/g,Langmuir比表面积为1 053.69 m2/g;利用污泥活性炭吸附制药废水,实验结果符合Freundlich方程,由此建立的分形吸附模型证明制备的污泥活性炭具有分形特征,其分形维数越高,则粗糙度越大,碘吸附值越高。  相似文献   

15.
梧桐叶活性炭对不同极性酚类物质的吸附   总被引:3,自引:0,他引:3  
以梧桐枯叶为原料、磷酸为活化剂制备活性炭,研究了不同浸渍比、活化温度、活化时间对活性炭孔结构和表面化学性质的影响. 通过XRD(X射线衍射)、BET比表面积、红外图谱、XPS(X射线光电子能谱)等对梧桐叶活性炭进行表征,并对其表面零电荷点(pHpzc)进行了测定,从热力学的角度研究了梧桐叶活性炭对水溶液中不同极性酚类物质的吸附行为. 结果表明,梧桐叶活性炭制备的最佳工艺条件为:浸渍比(质量比)为3∶1,活化温度为450℃,活化时间为2.5h. 浸渍比增大、活化温度升高和活化时间的延长,都有利于增加活性炭表面极性;活性炭的极性表面对酚类物质的吸附有重要影响,梧桐叶活性炭对苯酚、邻硝基苯酚和对硝基苯酚的吸附量分别达到79.2、93.9和95.8mg/g. 热力学研究表明,梧桐叶活性炭对不同极性酚类物质的吸附符合Frenundlich等温吸附方程,并且是一个自发的放热过程,其吸附焓变、吸附熵变、吸附自由能变均小于零.   相似文献   

16.
用草浆造纸黑液制取活性炭   总被引:5,自引:0,他引:5  
本法用酸水解炭化、ZnCl_2活化法处理草浆造纸黑液生产活性炭.结果表明,由7—8Be的草浆黑液1L可制20g左右的活性炭.活性炭的碘值>1000mg/g,亚甲基兰值>180ml/g,其主要指标已超过我国LY216-79和日本JIS K1426标准一级品的要求.提取活性炭后,黑液中COD_(Cr)去除率达72%,色度去除率达93%.残液还可作提取Na_2SO_4、糠醛的原料.  相似文献   

17.
Activated carbon foam was successfully prepared from phenolic resin synthesized with phenol and formaldehyde under alkali condition. The influence of process variables, such as steam rate, carbonization temperature, carbonization time, activation temperature and activation time on the adsorption capacities of the activated carbon foam was studied. Under the optimum experimental conditions, the activated carbon foam with a specific surface area 727.62 m2/g was obtained. Moreover, the iodine value and carbon tetrachloride value of the activated carbon foam was 1050.28 mg/g and 401.37 mg/g, respectively. The pore size of the activated carbon foam was in the range of 3.5–5 nm which was determined through the N2 adsorption test. In addition, the yield of the activated carbon foam was 36.24%. The result of scanning electron microscopy (SEM) showed that the activated carbon foam became honeycomb structure, and its pore wall was thinner and smoother compared to the unactivated carbon foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号