首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
生态工程综合治理系统对农业小流域氮磷污染的治理效应   总被引:5,自引:4,他引:1  
以典型农业小流域——开慧河流域源区为研究对象,基于研究区农业面源污染的主要排放特征,建立以生态湿地为主的小流域面源污染生态工程综合治理系统,重点探讨其对水体氮磷污染物的去除效果.结果表明,畜禽养殖业是开慧河流域源区水体氮磷污染物的主要来源,需要重点防控.组合生态湿地处理工程对农村分散式生活与养殖混合废水总氮(TN)、总磷(TP)的平均去除率为87. 1%和90. 9%;多级人工湿地拦截工程对农田排水与分散式养殖混合废水TN、TP的平均去除率为85. 7%和84. 9%;景观型生态湿地净化工程对末端汇水区水体中TN、TP的去除率在27. 1%~67. 4%和13. 3%~81. 5%之间.整个生态工程综合治理系统对流域TN和TP污染物的总拦截量分别为5 292 kg·a~(-1)和1 054 kg·a~(-1),占研究区农业面源TN、TP总污染负荷的35. 3%和43. 6%.因此,构建的生态工程综合治理系统对流域农业面源氮磷污染具有较好的治理效应,适合在我国南方小流域水环境治理中推广应用.  相似文献   

2.
文章以昆明市主要排污河道之一的大清河入滇池的小流域为研究对象,针对小流域范围内城郊型面源污染状况,通过详细的问卷调查和实地采样分析,初步得出研究区污染物产生的来源、产生特点和发生量。结果表明:生活污水排放、地表径流产污、农田排水是该研究区氮、磷污染物排放的三大来源;其中,总氮排放量有54.7%来源于生活污水,25.9%来源于农田化肥流失;总磷排放量有61.5%来源于生活污水,24.8%来源于地表径流。滇池周边地区面源污染物来源和特征有别于滇池全流域的各污染类型比值,面源污水已成为城郊区面源污染物的主要来源,是控制之要点。因地制宜,就地处理城郊型的农村生活污水,科学平衡施肥,降低地表径流排污浓度,是城郊型滨湖带小流域面源污染治理成功的关键。  相似文献   

3.
滇池面源污染及其综合治理   总被引:15,自引:0,他引:15  
滇池面源污染物主要是N、P、COD和BOD5,来源于水土流失、湖面直接进入、地表径流、农田不合理施肥以及农村生活废弃物及乡镇企业污染。应通过小流域治理、发展生态农业和修沿湖污工程进一步加以治理。  相似文献   

4.
采用资料收集、现场调查及实验分析的方法,明确了水库库区的农业面源污染负荷及比例。研究结果表明:农业面源污染产生的入库TN量为7532.3 t/a,其中农田化肥的TN产生负荷量为3365 t,占比最大,为44.7%,农村生活污水的TN产生负荷量为22.7 t,占比最小,为0.3%;农业面源污染产生的入库TP量为2781.01 t/a,产生负荷量最大的污染源为农田化肥,为203.1 t,占73%。  相似文献   

5.
近20年来广东省农业面源污染负荷时空变化与来源分析   总被引:1,自引:0,他引:1  
广东省农业面源污染负荷产生量大,对区域生态环境造成严重影响.采用清单分析法分析了近20年(1999~2019年)广东省农业面源污染负荷时空变化特征,探讨了农业面源污染的来源情况,并分析了农业生产投入强度、农业面源污染负荷和农业面源污染指标的关系.结果表明,近20年广东省农业面源污染总负荷下降6.08%,其中化学需氧量(COD)、总氮(TN)和总磷(TP)的污染负荷增幅分别为-11.88%、 4.99%和26.17%,耕地化肥和农药投入强度分别上升112.19%和60.38%.珠三角地区是广东省农业面源污染负荷最高的地区,其次分别是粤北、粤西和粤东地区.畜禽养殖是COD的主要来源,化肥和畜禽养殖是TN的主要来源,畜禽养殖和水产养殖是TP的主要来源,且水产养殖污染物排放占比呈现出明显上升趋势.不同区域的污染物来源存在一定差异,粤西、粤北和粤东地区COD和TP主要来源是畜禽养殖,TN的主要来源是化肥;珠三角地区水产养殖业成为TN和TP污染负荷的主要来源.广东省面源污染负荷总量下降主要源于城镇化水平的提高和农村人口比例减少.总体而言,广东省面源污染存在时间阶段性变化与空间差异,应当采取全面治理...  相似文献   

6.
滇池流域农村面源污染状况分析   总被引:36,自引:0,他引:36  
对滇池流域沿湖2km内、15个乡镇农村面源污染状况进行了调查研究与分析。结果表明:研究区化肥、农药的施用强度均高于全国平均水平。化肥的过量施用是农村面源氮、磷流失的主要原因,分别占95%和93%,农村生活污水对氮、磷流失的贡献率为3%,农村固体废弃物分别为2%和4%。针对存在的问题,提出了防治农村面源污染的一些具体对策和建议。  相似文献   

7.
沱江流域总氮面源污染负荷时空演变   总被引:6,自引:4,他引:2  
肖宇婷  姚婧  谌书  樊敏 《环境科学》2021,42(8):3773-3784
根据四川省沱江流域水环境受总氮(TN)面源严重污染的现状,采用排污系数法估算2007~2017年该流域来自各面源污染源的TN污染负荷,并利用空间重心统计法和空间分析技术揭示沱江流域TN污染负荷时空分布特征及转移趋势,以期为相关部门精准防控和预警沱江流域面源污染提供理论依据.结果表明,2007~2017年畜禽养殖污染源对整个流域的TN污染负荷贡献率每年均在45%以上,是TN面源污染的主要污染源.农村生活和农村生活垃圾污染源的贡献率呈逐年减少趋势,农田固废和农田径流污染源的贡献率则呈增加趋势.TN总污染负荷总体呈下降趋势,2010年污染负荷最大,达到5.7×104 t,2017年最小,为4.69×104 t.污染负荷在空间上的异质性变化及降雨径流的不均匀分布驱使畜禽养殖、农田固废类和农田径流污染源的TN污染负荷重心由西北向东南方向移动,流域东南部是畜禽养殖、农田固废类和农田径流TN污染的重点防控区域.东南部各区县的农业人口大量向城市人口转化,进而驱动农村生活和农村生活垃圾污染源的TN污染负荷重心由东南向西北方向转移,其转移范围高达66.35 km2,由此确定的最小边界圆是污染源污染负荷变化的重点识别区域,沱江流域西北部则是农村生活和农村生活垃圾TN污染的重点防控区域.本研究拓展了环境科学领域对流域污染负荷时空演变的探究方法,对于改善水环境质量,促进流域经济可持续发展具有重要意义.  相似文献   

8.
掌握黄河流域甘肃段面源污染负荷特征及其来源,是在区域尺度上提升水环境污染治理水平的重要基础。基于DPeRS面源模型,从农田径流、城镇径流、畜禽养殖、农村生活、水土流失5大污染类型,选取TN、TP、NH3-N和COD 4个污染指标,对甘肃黄河流域9个市(州)58个县(区)面源污染进行污染负荷估算、污染来源解析及空间分布分析。结果表明:从模型估算结果看,2018年整个流域TN、TP、NH3-N和COD面源污染排放负荷均值分别为65.6,11.8,19.1,77.2 kg/km2。从区域尺度分析,甘肃黄河流域TN、TP面源污染负荷最高的区域均是兰州市安宁区,分别占整个流域总负荷的10.83%和5.16%;NH3-N和COD面源污染负荷最高的区域均是临夏回族自治州临夏市,分别占整个流域总负荷的26.23%和56.56%。从污染产生来源分析,TN、TP、NH3-N和COD的首要污染来源分别为农田径流、水土流失、农田径流和畜禽养殖。从空间分布分析,黄河流域各县(区)面源污染总负荷呈中间高两边低的分布特征,污染负荷较重的区域主要集中在黄河兰州段、大夏河临夏段、渭河天水段等局部区域。  相似文献   

9.
滇池流域花卉蔬菜废弃物对湖泊水质影响的模拟研究   总被引:1,自引:0,他引:1  
选择流域内6种代表性的蔬菜、花卉秸秆,研究其对滇池水质的影响。结果表明:在相同水平的秸秆投加量下,TN、TP负荷量在秸秆投入水中约45d和30d左右均达到最大值,花卉秸秆在水体中TN、TP的总释放量明显高于蔬菜秸秆;水体TN、TP含量与秸秆投加量均成显著正相关。花卉、蔬菜秸秆进入滇池水后的最大潜在污染负荷量分别为:花卉秸秆的TN污染负荷为54.11g/kg,TP污染负荷为23.19g/kg;蔬菜秸秆的TN污染负荷为41.16g/kg,TP污染负荷为13.56g/kg。随意弃置堆放的花卉蔬菜秸秆对滇池水体可能存在的潜在面源污染负荷TN、TP极大值分别为12815.43 t和5290.51 t。  相似文献   

10.
选择流域内6种代表性的蔬菜、花卉秸秆,研究其对滇池水质的影响。结果表明:在相同水平的秸秆投加量下,TN、TP负荷量在秸秆投入水中约45d和30d左右均达到最大值,花卉秸秆在水体中TN、TP的总释放量明显高于蔬菜秸秆;水体TN、TP含量与秸秆投加量均成显著正相关。花卉、蔬菜秸秆进入滇池水后的最大潜在污染负荷量分别为:花卉秸秆的TN污染负荷为54.11g/kg,TP污染负荷为23.19g/kg;蔬菜秸秆的TN污染负荷为41.16g/kg,TP污染负荷为13.56g/kg。随意弃置堆放的花卉蔬菜秸秆对滇池水体可能存在的潜在面源污染负荷TN、TP极大值分别为12815.43 t和5290.51 t。  相似文献   

11.
长江流域总氮排放量预测   总被引:1,自引:0,他引:1  
丁肇慰  郑华 《环境科学》2021,42(12):5768-5776
水环境污染是长江流域突出的环境问题之一,预测污染物排放特征可为流域水污染防治提供科学基础.本研究综合采用灰色理论预测模型、Conversion of land use and its effects at small region extent(CLUE-S)模型以及 Integrated valuation of ecosystem services and tradeoffs(InVEST)模型,预测2025年长江流域非点源以及点源总氮排放趋势.结果表明:①非点源总氮排放呈减少趋势,2015~2025年区域非点源总氮排放量减少23.96%,中下游农业区总氮排放骤减,而上游局部地区呈增加趋势;②点源总氮排放总体呈现增加趋势,2015~2025年区域点源总氮排放量增加1.79%,主要是由于城镇废水排放的增加以及中下游沿江城市群生活污水排放显著增加,而中下游丘陵地区点源总氮排放呈现减少趋势;③长江流域总氮排放量呈现减少趋势,2015~2025年减少2.67%,但仍有37.64%区域呈现总氮排放增加的趋势.长江流域未来应加强对上游面源污染治理以及中下游工业、城镇废水排放的管控.采用多模型结合的手段可以精细揭示了长江流域总氮排放空间格局及未来趋势,可为明确流域总氮排放控制目标提供科学基础,也可为实现高效的水环境治理提供科学依据.  相似文献   

12.
常熟市农业和农村污染的优先控制区域识别   总被引:5,自引:1,他引:4  
农业和农村污染发生的广域性、分散性和随机性等特征,使得农村污染治理难以抓住重点.在乡镇级单元尺度上,采用清单分析法,核算江苏省常熟市农田种植(化学肥料施用和作物秸秆遗弃)、畜禽养殖、水产养殖、农村生活(生活污水和人粪尿、生活垃圾)共4类6种农业和农村污染源的化学需氧量(COD)、全氮(TN)、全磷(TP)排放量和排放强度,采用聚类分析法,通过敏感性评价识别出农业和农村污染的优先控制区域和优先控制污染源,从而使得农业和农村污染控制与管理措施更具针对性.结果表明,2007年常熟市农业和农村污染源COD、TN和TP的排放量分别为5496.07、4161.03、647.54t.a-1,COD、TN和TP的排放强度分别为48.84、36.98、5.75kg.hm-2.COD的主要污染源是农村生活和水产养殖,贡献率在75%以上,TN和TP的主要污染源是农田种植和水产养殖,贡献率在80%以上.敏感性评价识别出古里镇和沙家浜镇是常熟市农业和农村污染的优先控制区域,农田种植和水产养殖是优先控制区域内要优先控制的污染源.  相似文献   

13.
潮河流域非点源污染控制关键因子识别及分区   总被引:2,自引:0,他引:2  
将GIS技术、ArcSWAT模型与分析技术相结合,以农耕养殖程度较高的北京密云水库上游潮河流域为研究区,通过对流域近20年非点源污染负荷时空变异情况进行模拟,识别影响非点源污染流失的关键因子,进行非点源污染控制区划.结果表明,总氮和总磷年均负荷量分别为563.3,28.7t/a,氮磷负荷空间分布特征表现为:丰水年以地势较高且农业耕作活动频繁区域为主,平水年和枯水年表现为靠近河道的农业用地与畜禽养殖区为主.采用多因素方差分析11种不同因素对流域非点源污染负荷的影响程度表明,施肥量是影响氮磷输出的最主要的因子,坡长、土壤类型、土地利用方式及坡度是影响氮磷输出的次重要因子;针对潮河流域长期传统耕作以及化肥过量施用的现状,土壤有机磷的含量也会对总磷的输出产生一定的影响.潮河流域可划分为3个污染控制区,第1类:污染控制区(以近河道耕种区为主,面积186.74km2),第2类:污染治理区(农村生活及畜禽养殖区为主,面积23.09km2),第3类:生态修复区(高坡度强降雨区为主,面积1365.25km2).该研究结果可有效提升流域非点源污染治理的效率,为水源地流域环境保护提供参考.  相似文献   

14.
余辉 《环境科学研究》2014,27(11):1243-1250
琵琶湖富营养化全面有效的控制得益于对流域污染源的系统控制. 琵琶湖流域污染源系统控制包括通过立法与监管严格控制工厂与企业的污水排放、城镇污水管网与大型污水处理设施的高度覆盖、农业集落污水处理设施的全覆盖三部分,流域污水处理系统的全覆盖及高度处理技术的普及是其最为成功的经验之一. 琵琶湖流域城镇下水道普及率达86.4%,主要污染物——TN、TP及CODMn的去除率分别高达90.0%、98.7%及94.6%. 琵琶湖流域同时实施了净化槽普及、设置农业集落排水处理设施、初期雨水净化处理及农田循环灌溉等具有地方特色的面源治理对策. 通过综合治理,琵琶湖主要入湖污染负荷明显减少,与1985年相比,2012年CODMn点源污染负荷减少了76.8%,TN减少了45.5%,TP减少了65.6%. 与之比较,我国的湖泊治理存在的问题主要包括有针对性的地方排放标准的缺失及执法力度的不足、城镇污水深度处理及运营管理技术上的差距、面源污染对策的严重不足.   相似文献   

15.
汉丰湖流域农业面源污染氮磷排放特征分析   总被引:20,自引:10,他引:10  
为把握汉丰湖流域农业面源污染现状,探明其首要污染源和重点控制区域,应用排污系数法估算了汉丰湖流域2015年种植业源、畜禽养殖业源和农村生活源TN、TP污染物的贡献量,利用GIS空间分析法研究了其排放的空间分布特征.结果表明,2015年汉丰湖流域农业面源污染TN和TP的总负荷量分别为2721.42 t和492.04 t;等标污染负荷量以南河子流域最大,汉丰湖子流域最小;不同类型农业面源等标污染负荷总量差异很大,以肥料源和畜禽养殖源为主要来源,其中肥料源等标污染贡献率为76.92%,是汉丰湖流域首要污染源;各乡镇中,敦好镇、铁桥镇和白桥镇的等标污染负荷量较高,均高于350 m3·a-1,为重点控制乡镇.等标污染负荷评价及聚类分析结果表明,汉丰湖流域农业面源有种植业源-畜禽养殖源复合主导型、肥料源-畜禽养殖源复合主导型、种植业源严重污染型和肥料源复合主导型这4种污染类型.  相似文献   

16.
畜禽养殖废弃物及农业氮磷流失造成的环境面源污染已经成为太湖流域湖泊和水体污染的主要来源之一.通过现场勘查、文献查阅、实地调研等方法,对以太仓为代表的江苏太湖流域畜禽养殖及农业氮磷流失造成的农村生态环境污染问题进行了分析,研究提出了污染防治示范区构建的指导思想、基本原则、技术路径、技术及模式创新点,用五大发展新理念指导污染防治示范区构建,创新畜禽养殖废弃物及农业氮磷污染防治的产业化模式、区域分散畜禽粪便收集服务的社会化体系、覆盖农业氮磷污染防治全程的可控化技术体系.  相似文献   

17.
SWAT模型在洱海流域面源污染评价中的应用   总被引:5,自引:1,他引:4  
重点污染区域和污染因子的识别是面源污染控制的基础. 通过将物理过程模拟及排污系数法计算进行整合,建立了SWAT模型,以描述农业生产活动与污染入湖量之间的关联关系,并以云南洱海流域总氮污染为例,使用验证后的SWAT模型模拟计算不同空间单元和不同农业生产活动对入湖TN的污染贡献系数,定量分析流域内各区域的农业面源污染源结构,识别洱海流域重点农业污染源和农业污染村镇. 结果表明,奶牛养殖、生猪养殖和大蒜种植是目前洱海流域内入湖TN污染的最重要农业污染源,占流域总污染负荷的66.12%. 对入湖TN污染贡献最大的6个村镇为江尾、右所、三营、玉湖、凤仪和喜洲,占流域总污染负荷的63.41%.   相似文献   

18.
亚热带农区生态沟渠对农业径流中氮素迁移拦截效应研究   总被引:15,自引:7,他引:8  
以我国亚热带农业面源污染防控工程——生态沟渠为研究对象,在2013~2014年对其径流量和每月进出口水质中NH~+_4-N、NO~-_3-N和TN的质量浓度进行监测,通过分析生态沟渠在不同时间段对不同形态氮素的去除差异,探讨了生态沟渠对面源污染中氮素迁移的拦截效应.结果表明,2 a内生态沟渠对NH~+_4-N、NO~-_3-N和TN的平均去除率分别为77.8%、58.3%和48.7%;拦截量分别为38.4、59.6和171.1 kg·a~(-1);进水中无机态氮NO~-_3-N和NH~+_4-N之和占TN质量分数的平均值为47.5%,出水中平均值为33.6%,比进水显著降低(P0.01).2014年生态沟渠中水生植物全部改种为绿狐尾藻后,对NO~-_3-N和TN的拦截率比2013年分别增加了30.5%和18.2%,表明种植绿狐尾藻进一步提升了生态沟渠对氮素的拦截能力.可见,生态沟渠对农区地表径流中氮素迁移有较好的拦截作用,可作为一项重要的农业面源氮污染防控技术.  相似文献   

19.
非点源污染是水污染的重要来源之一,揭示非点源污染负荷空间分布特征、筛选并布设最佳管理措施(best management practices,BMPs)对水污染的高效治理有至关重要的意义. 北运河作为北京市重要的排水通道和连接京津冀的重要生态走廊,加强北运河上游非点源污染治理对北运河流域的水质改善至关重要. 然而,当前缺乏针对非点源污染关键源区内布设不同BMPs生态效益评价的研究. 因此,为了解析北运河上游非点源污染空间分布特征,评估关键源区布设不同措施的生态效益,本文基于SWAT模型定量模拟了2019年北运河上游总氮、总磷负荷空间分布特征,并采用单位负荷指数法识别了非点源污染关键源区,同时评估了关键源区布设不同BMPs的总氮、总磷削减效果. 结果表明:①2019年北运河上游流域产生的总氮、总磷负荷分别为126 444.22和12 394.76 kg,呈东南高西北低的空间分布特征,主要来源于城镇用地、耕地和果园等地类. ②北运河上游关键源区分布在东南部17条子流域,占流域总面积的13.16%,产生的总氮、总磷负荷分别占全流域的39.16%和38.10%. ③1/5面积比植被缓冲带的总氮、总磷削减率最高,分别为38.20%和40.37%;2 km河道植草的总氮、总磷削减率最高,分别为19.47%和50.90%;由于关键源区范围内农地面积较小(9.62%),化肥减施措施下污染物削减较低. 研究显示,非点源污染关键源区主要分布在人类活动较多的流域东南部,可通过布设合适的植被缓冲带和河道植草措施,降低关键源区非点源污染负荷.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号