首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
同步糖化发酵从厨余垃圾生产燃料乙醇的研究   总被引:1,自引:0,他引:1  
由于厨余垃圾含有大量的水和有机物,成为垃圾收集与运输过程中腐败、发臭之源.为了寻找垃圾处理及再生利用的新方法,本文以北京科技大学学生二食堂的厨余垃圾为原料,应用同步糖化发酵(SSF)的方法制取燃料乙醇,探讨了其同步糖化发酵过程的影响因素.结果表明,在适宜的乙醇发酵条件范围内,乙醇产量最高为15.3mL/100 g有机垃圾,达到了回收厨余垃圾中有用的物质和能源,实现其资源化的目的.  相似文献   

2.
以学生食堂的厨余垃圾为原料,接种运动发酵单胞菌同步糖化发酵制取燃料乙醇,探讨其发酵过程的影响因素,并与酵母发酵的结果进行对比.结果表明,较适宜的乙醇发酵条件为:固液比1:0.5,pH5,接种量10%,温度30 , ℃ 发酵时间40h,在此条件下,乙醇产量为53g/L.与接种酵母进行乙醇发酵相比,运动发酵单胞菌发酵具有乙醇产率高,发酵速率快等优点,可以有效地从厨余垃圾中生产乙醇.  相似文献   

3.
水绵干燥样中含有大量的淀粉、纤维素等碳水化合物,利用水绵制备生物乙醇,不仅可以拓宽生物乙醇的原料来源,还可以缓解水体富营养化现象。对水绵干燥样成分进行分析后,通过自行构建的水绵发酵产乙醇工艺,考察了预处理混合物中稀硫酸用量、纤维素酶用量、预水解时间、预水解温度、发酵时间和发酵温度对产乙醇浓度的影响;利用响应面中心组合设计法和响应面分析法,得到了水绵发酵产乙醇工艺参数的回归模型,并在回归模型预测出的优化条件下进行了放大倍数的产乙醇试验,采用Logistic模型基于1st Opt软件,得到能描述水绵发酵产乙醇全过程的分段优化模型。试验结果表明:水绵干燥样中淀粉、纤维素等碳水化合物约占水绵干重的67.53%,水绵发酵产乙醇具有巨大的潜力;最佳产乙醇条件为纤维素酶(10万u/g)与水绵干燥样的投加质量比1∶1、预水解温度50℃、预水解时间50 min、发酵温度40℃,产物乙醇的最佳浓度可达5.61 g/L,以原料计算的乙醇得率为28.1%(g/g);在最佳产乙醇条件下,最大乙醇浓度为5.715 8 g/L,最大乙醇产生速率为0.691 9 g/[g/(L·h)]。该结果对水绵发酵产乙醇工艺参数的选择及对产乙醇全过程的调控具有指导意义。  相似文献   

4.
选用毛白杨落叶为研究对象,通过酸化预处理初步降解其中的纤维质并提高其发酵阶段的可生化性,综合分析在不同pH值、不同温度、不同固液比的条件下酸化产物的总糖含量、纤维素及半纤维素含量与出粉率指标,采用灰色局势决策法确定pH值2~3,固液比1:20,60℃处理12 h为其最佳酸处理条件。后在最佳处理条件下选用绿色木霉与产阮假丝酵母共发酵毛白杨落叶酸化产物,发现较单酵母发酵酸化液与酸化残渣,混菌更具优势。其中,毛白杨落叶酸化残渣经混菌发酵其分解率可达到55%,蛋白含量明显升高,最高为72 mg/g;而酸化液混菌发酵在第7天时菌体生物量最高可达1.2 g/L,蛋白含量为99 mg/g。  相似文献   

5.
餐厨垃圾可定向发酵产乙醇,但复杂的预处理导致处理时间长、工艺复杂度增加. 本文通过直接接种酵母菌和灭菌后接种酵母菌对比试验,分析发酵系统内乙醇、乙醇前体物还原糖、还原糖前体物淀粉的降解与产生规律,探讨餐厨垃圾直接接种酵母菌固态厌氧发酵产乙醇的可行性及规律. 结果表明:酵母菌的添加能够促进餐厨垃圾固体厌氧发酵产生乙醇,接种酵母菌后乙醇浓度为11.86~12.09 g/L,是空白对照的8.41~31.50倍,且高于灭菌预处理后接种的6.88~10.02 g/L;基于修正的Gompertz模型分析也证实了上述结果,接种酵母菌后,系统产乙醇潜力(Pm)和单位最大乙醇产率(Rm)也随之上升,但接种量对餐厨垃圾的Pm和Rm影响不大. 对乙醇前体物还原糖的分析表明,接种酵母菌能够在发酵初期就可以发挥作用,促使系统内还原糖在0~4 h内快速降为43.37~46.55 mg/g,从而加速了餐厨垃圾的稳定化进程,但在4~24 h内,由于次生代谢物的抑制作用,系统内还原糖未出现明显的产生和降解. 还原糖前体物淀粉的水解情况分析表明,接种酵母菌可将淀粉的水解率由19.36%提高到27.90%~37.57%,但淀粉含量在274.02~316.51 mg/g之间时已不再发生水解. 研究显示,直接接种酵母菌有助于餐厨垃圾固态厌氧发酵产乙醇含量的提高,体系中还原糖、淀粉含量并未成为餐厨垃圾固态厌氧发酵产乙醇量的限制性因素.   相似文献   

6.
为提高水稻秸秆生物转化产糖效率,分别用氢氧化钠和碱性双氧水对其进行预处理,并考察处理液浓度、温度和时间对木质纤维素酶解糖化效果的影响. 通过分析预处理前后水稻秸秆组分和结构变化,揭示氢氧化钠预处理和碱性双氧水预处理对水稻秸秆酶解效果的影响机理. 结果表明:①在80 ℃的条件下,使用1.25%的氢氧化钠对水稻秸秆水浴处理3 h后效果较好,且酶解72 h后还原糖含量为480.81 mg/g. ②在50 ℃的条件下,使用碱性双氧水(1.5%的氢氧化钠+2%的双氧水)对水稻秸秆水浴处理5 h后效果较好,且酶解72 h后还原糖含量为575.85 mg/g. ③与未预处理的水稻糖化效果(132.7 mg/g)相比,经氢氧化钠预处理和碱性双氧水预处理后,水稻秸秆酶解产糖率分别提高了262.3%和336.2%. ④扫描电镜显示,经氢氧化钠和碱性双氧水预处理后,水稻秸秆的比表面积均显著增加,表面结构更加疏松. ⑤红外光谱和X射线衍射光谱表征显示,氢氧化钠预处理和碱性双氧水预处理均可消解水稻秸秆中的木质素并使其转化成纤维素,从而可以促进后续的酶解糖化效果. 研究显示,氢氧化钠预处理和碱性双氧水预处理都能较好地促进水稻秸秆的酶解糖化过程,得到较高的糖含量.   相似文献   

7.
以稻草秸秆为底物制取复合型生物絮凝剂的研究   总被引:8,自引:1,他引:7       下载免费PDF全文
以稻草秸秆作碳源,采用两段式发酵工艺制取复合型生物絮凝剂,首先通过纤维素降解菌HIT-3对稻草秸秆进行生物降解,再使产絮菌F2-F6利用秸秆糖化液替代葡萄糖制备生物絮凝剂,并定量分析了复合型生物絮凝剂的产量.结果表明,预处理后的秸秆还原糖产率达到10.6%,纤维素酶活性最大为0.13U/mL,TOC含量不断增加,TN含量不断减少,纤维素降解菌株对稻草秸秆具有很好的降解作用,生物絮凝剂絮凝率为90%.向秸秆糖化液中补加0.2g/L酵母膏调整发酵液营养比例,可使产絮高峰期提前,絮凝率达到95%.每t稻草秸秆可以制取复合型生物絮凝剂44kg.  相似文献   

8.
通过Plackett-Burman设计法筛选影响造纸废弃纤维糖化的主要影响因子,采用Box-Benhnken实验设计优化造纸废弃纤维糖化实验条件。结果表明:酶解时间、底物浓度、酶用量是影响废弃纤维的主要影响因素;在酶解时间81.5 h、底物浓度51.3 g/L、复合纤维素氧化酶酶量37.2 IU/g底物的条件下,糖化率可达到73%以上。  相似文献   

9.
为了解胞外聚合物(EPS)对污泥水解酸化处理的影响,采用批量试验研究了污泥厌氧水解酸化处理过程中EPS的变化以及温度、pH值、污泥来源、污泥浓度对其的影响.结果表明,pH值和污泥来源对EPS产率、成分有显著的影响.强酸性和强碱性条件下污泥水解过程中溶解性EPS产率是中性条件下的2倍多;强酸性条件下细胞破裂较多,DNA物质占总EPS含量的20%左右;强碱性条件多糖类物质溶出量占总EPS的80%以上.A/O工艺污泥水解酸化EPS产率最大,平均值为41.1mg/gVSS;其次为SBR、氧化沟(OD)和A2/O工艺污泥,其中OD工艺污泥水解酸化产生的EPS中糖类与蛋白质的质量比(φ)值远小于其他工艺污泥.温度由18℃升高至35℃时,溶解性EPS产率增加近50%,多糖所占比例逐渐增大.污泥浓度由2000mg/L升高至6000mg/L,EPS产率增大至38.1mg/gVSS,当污泥浓度达到8000mg/L时,EPS产率明显减少(23.1mg/gVSS).  相似文献   

10.
以普通小球藻FACHB-25为研究对象,利用常压室温等离子体在不同功率条件下对其诱变处理,在功率100W、120W条件下筛选出3株优势藻株,依次编号为S100-7、S120-4、S120-9.其中S120-9藻株培养末期生物量增加明显且多糖产量是原始藻株产量的1.34倍,达到237.98mg/L;S120-4碳水化合物含量占比为37.55%,较原始藻株提高了43.48%.对比了各藻株在光合性能、细胞组分以及细胞形态等方面差异.通过同步糖化发酵(SSF),碳水化合物含量最高的S120-4藻株乙醇产量达到1.58g/10g藻,但其生物量积累受到限制.考虑生物量积累情况,推算出S120-9藻株单位体积藻液乙醇产量最高达到0.1033g/L.  相似文献   

11.
为提高木薯酒精废液中固形物的降解效率,优化木薯酒精废液的厌氧发酵特性,采用高效纤维质降解菌群作为CSTR(continuous stirred tank reactor,连续搅拌反应器)接种污泥,通过逐级提高进料负荷,研究不同容积负荷下的厌氧消化性能及相应的酶活性变化,建立了厌氧发酵过程动力学模型.结果表明,在高温(55℃)条件下经长时间稳定运行,容积负荷为14 kg/(m3·d)(以CODCr计)时,反应器出水ρ(TCOD)(TCOD为总化学需氧量,以CODCr计)和ρ(SCOD)(SCOD为溶解性化学需氧量,以CODCr计)分别为15 367.6、10 982.8 mg/L,TCOD去除率达到70%~75%;φ(CH4)在48%左右,沼气产率为0.22 L/g(以每g TCOD计);此外,木聚糖酶活性、纤维素酶活性在该条件下达到最大值,分别为42.1、30.2 U.脱氢酶活性在容积负荷为12 kg/(m3·d)时达到最大值80.1 TFμg/(h·mL).动力学模型研究表明,最大原料产气率(ym)为0.335 L/g(以每g TCOD计),一级反应常数(k)为0.743 d-1,产气率为0.3 L/g,通过该模型可以得到最佳HRT(hydraulic retention time,水力停留时间)为11.5 d,最佳容积负荷为4.6 kg/(m3·d).研究显示,在高温高容积负荷条件下,CSTR能够稳定的处理木薯酒精废液,并且能够获得较高的纤维素和半纤维素酶活性.   相似文献   

12.
The process of the rice straw degradation in the fermentor with aeration at 290 ml/h was studied. The results of dissolved oxygen (DO) indicated that the optimum DO during cellulose degradation by microbial community MC1 ranged from 0.01 to 0.12 mg/L. The change model ofpH values was as follows: irrespective of the initial pH of the medium, pH values decreased rapidly to approximate 6.0 after being inoculated within 48 h when cellulose was strongly degraded, and then increased slowly to 8.0--9.0 until cellulose was degraded completely. During the degradation process, 15 kinds of organic compounds were checked out by GC-MS. Most of them were organic acids. Quantity analysis was carried out, and the maximum content compound was ethyl acetate which reached 13.56 g/L on the day 4. The cellulose degradation quantity and ratio analyses showed that less quantity (under batch fermentation conditions) and longer interval (under semi-fermentation conditions) of rice straw added to fermentation system were contributed to matching the change model of pH, and increasing the quantity and ratio of rice straw degradation during cellulose degrading process. The highest degradation ratio was observed under the condition office straw added one time every five days (under semi-fermentation conditions).  相似文献   

13.
纤维素酶气相双动态固态发酵   总被引:6,自引:0,他引:6  
为了充分利用纤维素酶固态发酵的优势,提出了纤维素酶气相双动态固态发酵的方式.研究结果表明:在优化条件下(最佳压力脉冲范围、脉冲频率及气体内循环速率),发酵温度得到较好地控制,9.0cm高的填料层中最大温度梯度为0.12℃/cm;以汽爆秸秆为底物,发酵水活度得到较好的保持;动态培养发酵周期(60h)比静态发酵周期(84h)缩短了 1/3,酶活(20.36IU/g)比静态酶活(10.82IU/g)提高了1倍,压力脉动固态培养的料层上中下微生物生长状况均匀一致,且疏松,而静态固态发酵的料层中部几乎没有菌体生长利用气相双动态固态发酵可为纤维素酶大规模生产奠定基础.  相似文献   

14.
果蔬废弃物厌氧消化特征及固体减量研究   总被引:4,自引:1,他引:3  
采用两相厌氧消化工艺处理固体果蔬废弃物,反应液在系统内循环使用,研究了果蔬废弃物产酸发酵类型、产甲烷相对消化产物的利用顺序和果蔬固体减量效果。结果表明,在酸化阶段,挥发酸总量最高达5800mg/L,其中丁酸占45%、戊酸占23%、乙酸占20%、丙酸和乙醇占10%左右,属于丁酸型发酵;产甲烷相对挥发酸的利用顺序为乙醇>丁酸>戊酸>丙酸>乙酸,产甲烷阶段体系ORP为-480mV左右;在厌氧消化处理过程中,反应液中COD由开始时的10000mg/L降至反应后期2000mg/L左右,COD去除率达80%以上;同时,果蔬固体物质去除率达到98.6%,果蔬废弃物减量效果明显。  相似文献   

15.
黄婧  肖艳春  陈彪 《环境科学研究》2020,33(8):1964-1972
为有效缩短有机物厌氧发酵限制阶段的反应时间,提高发酵底物的生物产甲烷效率,以猪粪为发酵底物,添加外源纤维素酶和α-淀粉酶,应用一级动力学模型和Gompertz模型拟合厌氧发酵过程.结果表明:适量添加纤维素酶和α-淀粉酶对厌氧发酵系统的水解反应具有积极的促进作用,当两种酶的总添加量为40 mg/g、纤维素酶和α-淀粉酶配比为1:3时促进作用最为显著,其多糖浓度、TVFAs(乙酸、丙酸、丁酸和戊酸的统称)浓度峰值、累积沼气产气量、甲烷产率(基于猪粪中挥发性固体含量计算)分别为4 494 mg/L、8 666 mg/L、187 688 mL、392.1 mL/g,与CK(对照)组比分别提高了171.0%、23.3%、23.5%、24.3%.相关性分析表明,外源酶的添加对厌氧发酵系统中微生物可利用的C/N具有显著影响,可有效促进TVFAs转化产甲烷,当纤维素酶和α-淀粉酶配比为1:3时,厌氧发酵过程具有最大反应速率〔32.95 mL/(g·d)〕,与CK组相比水力停留时间(HRT)缩短了2.5 d,生物产甲烷效率提高了24.3%,厌氧发酵过程符合Gompertz模型(R2=0.999 2).研究显示,纤维素酶和α-淀粉酶对促进猪粪厌氧发酵有协同作用,当α-淀粉酶添加量不超过30 mg/g时,α-淀粉酶添加量与甲烷产率呈正相关;当纤维素酶添加量超过10 mg/g时,纤维系酶添加量与甲烷产率呈负相关.   相似文献   

16.
通过研究铅污染废弃稻草基质,探讨了不同w(Pb2+)条件下白腐菌对半纤维素、纤维素和木质素的降解性能以及发酵基质总重、腐殖酸碳的变化规律,并在降解半纤维素、纤维素和木质素的同时,研究了白腐菌对发酵基质中重金属的钝化作用.结果表明:在w(Pb2+)为200 mg/kg条件下,白腐菌对半纤维素、纤维素和木质素等较难降解的有机物表现出最好的降解性能,且对Pb2+的钝化作用很明显,对半纤维素、纤维素和木质素的降解率分别为52.36%,32.29%和44.16%;发酵基质总失重率最高达29.89%;w(腐殖酸碳)达142.01 mg/g.   相似文献   

17.
通过厌氧发酵动力学分析、还原糖及其他代谢产物变化情况,结合香蒲微观结构解析,系统研究酸(HCl)、碱(NaOH)、酶(纤维素酶R-10)3种预处理对水生植物厌氧发酵联产H2-CH4的影响. 结果表明:香蒲分别经酸、碱、酶3种预处理后,厌氧发酵联产累积H2、CH4产量及含量均显著提高,c(HCl)、c(NaOH)均为1.0mol/L, w(纤维素酶R-10)(以底物计)为10mg/g时,预处理最佳. 其中1.0mol/L NaOH预处理香蒲效果最佳,φ(H2)(H2含量)达30.09%,累积产H2量(以香蒲干质量计)达11.39mL/g;φ(CH4)(CH4含量)最高达67.48%,累积产CH4量(以香蒲干质量计)达41.87mL/g;还原糖利用率达50.87%,sCOD(溶解性化学需氧量)利用率达66.17%. 纤维素酶预处理后香蒲产CH4能力显著提高,产CH4阶段φ(CH4)最高为71.39%,累积产CH4量达46.32mL/g,还原糖利用率达72.10%. 扫描电镜微观结构分析表明,碱预处理对香蒲纤维素结构破坏程度最大,可有效增加香蒲与微生物接触面积,有利于厌氧发酵联产H2-CH4工艺的快速启动和稳定运行.   相似文献   

18.
Plackett-Burman实验设计优化餐厨垃圾发酵产燃料酒精的研究   总被引:6,自引:0,他引:6  
针对餐厨垃圾中营养元素含量丰富的特点,利用运动发酵单胞菌对餐厨垃圾发酵生产燃料酒精,采用Plackett-Burman实验设计分析多种酶制剂和营养物质对发酵过程的影响. 结果表明,糖化酶和蛋白酶对于酒精发酵影响显著,其他酶和营养物的添加对发酵均无显著影响,说明餐厨垃圾自身所含的丰富营养即可以满足细菌生长的需要. 进一步的单因素试验分析表明糖化酶的最佳添加量为100 U/g. 当同时添加100U/g 蛋白酶和100 U/g 糖化酶时,酒精产量达到最大值53g/L, 比单纯添加糖化酶时产量高10%,其酒精转化率为44%. 经酒精发酵后,餐厨垃圾粗蛋白增加了1.5倍且纤维素含量较低,可作为饲料使用. 利用餐厨垃圾产酒精不仅处理了污染严重的废物,同时也为酒精生产提供了廉价的原料,具有较高的环境效益和经济效益.  相似文献   

19.
旨在通过生物酶调节(碱性蛋白酶、中性蛋白酶和α-淀粉酶)提高初沉污泥的厌氧发酵效率,并通过微生物群落结构解析,SCFAs (short-chain fatty acids,SCFAs)组分分析等揭示其调控机理.结果表明,3种生物酶均可增强初沉污泥水解和产酸作用,碱性蛋白酶调控系统对初沉污泥厌氧发酵的促进效果最为明显,发酵第4d SCFAs的产量和产率分别达到1508mg COD/L和0.174g COD/g VSS.对比控制组,SCFAs的产量和产率分别增加了1129mg COD/L和0.13g COD/g VSS.微生物群落结构分析表明,在碱性蛋白酶调控发酵系统中,LentimicrobiumProteiniphilumBacteroides等发酵相关菌群的相对丰度得到了改善,MethanosaetaMethanospirillum等产甲烷古菌的活性受到了抑制.同时,生物酶调控对促进发酵过程乙酸占比也有促进作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号