首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
太湖富营养化控制机理模拟   总被引:16,自引:0,他引:16  
建立了一个将三维风生湖流模型,水质模型和富营养化模型耦合的数学模型,该模型不仅可以对太湖的风生湖流,总磷、总氮、COD等水质要素进行模拟,还可以模拟藻类在太湖中的生长和消亡情况以及其随风生湖流迁移的规律;在模型中,还考虑了水温、总氮、总磷和太阳辐射等环境生态因子对藻类生长率的影响,并且将模拟结果与1998年太湖的实测资料进行了对比,结果表明:该模型对风生湖流、总磷、总氮的模拟都是切合实际的,以叶绿素a浓度描述的藻类浓度的模拟值也能较好的拟合实测值。  相似文献   

2.
在2010年至2012年进行的上海某水源地水质监测资料的基础上,着重分析了该水源地2011年1月至10月总磷、总氮等多个分析因子的季节变化规律及点位分布状况,得出该水源地水库水体总磷及溶解氧浓度均符合国家相关标准,但总氮超过相应类别的标准;水体中的总磷、总氮、水温、光照条件、叶绿素a、溶解氧、透明度等是影响水体富营养化的重要环境因子;水源地的水质在温度低于20℃的春、秋、冬三季藻类爆发的可能性较低,但温度较高的夏季,具有藻类爆发的可能性等结论。从而反映了该水源地的富营养化现状及对市民饮用水影响的重大意义,并提出了防治建议。  相似文献   

3.
基于水体光学原理,确定了光照衰减系数与透明度之间的定量关系式;基于质量守恒原理,描述了氮磷营养盐与藻类之间的转化关系;耦合光因子和盐因子对藻类生长的驱动机制,建立了考虑光盐交互作用的富营养化数学模型.结合2015年4~7月在眉湖开展的水质监测数据,对模型进行了参数率定与验证.通过正交设计与情景模拟相结合,研究了光盐条件变化对藻类生长的驱动作用.结果表明,建立的富营养化模型能够较好的模拟不同光盐条件下藻类的生长趋势;低光照强度下营养盐浓度增加对藻类生长起到了抑制作用,营养盐浓度增加相同的倍数时TP浓度变化对藻类生长的影响作用要比TN浓度变化对藻类生长的影响作用大;整体上藻类的生长受到光照强度的影响高于营养盐,受到总磷的影响高于总氮,在设置的情境中光照强度、TP和TN浓度分别为89.6klx、0.168mg/L和2.72mg/L时最利于藻类生长.  相似文献   

4.
一小型藻华池塘浮游植物群落动态及其影响因子研究   总被引:4,自引:1,他引:3  
杨文  朱津永  张克鑫  万莉  陆开宏 《环境科学》2015,36(4):1309-1316
对小型藻华水体进行密集采样调查有利于揭示藻华过程中浮游植物演替规律及其影响因子.于3~10月对一小型藻华池塘进行为期30周的逐周跟踪调查,监测其水体理化指标和浮游生物种类和数量的变化,并应用PRIMER软件多元统计分析方法探求采样池塘浮游植物群落结构的动态变化及其与水体理化因子、浮游动物之间的关系.调查期间共发现浮游植物54种(属),细胞丰度在0.28×108~6.11×108cells·L-1之间;浮游动物55种(属),个体数量在26~2.5×105ind·L-1之间.浮游植物优势类群主要为蓝藻和绿藻,且随季节的变化浮游植物群落结构呈现出明显的演替过程,该过程可分为绿藻和隐藻共存期、绿藻和蓝藻共存期、蓝藻优势期这3个阶段.生物-环境相关性分析发现p H、水温、光照、总磷及轮虫、桡足类的数量是影响该池塘浮游植物群落结构动态变化的主要因素,且相比于浮游动物,水体理化因子的影响力或更强.  相似文献   

5.
考虑到太湖水华暴发过程中水质参数(如营养盐或水体理化参数)对浮游植物增殖的滞后效应,利用有滞后变量参与的格兰杰因果关系检验和向量自回归模型,分析了太湖梅梁湾湖区2000年~2012年的监测数据,探讨了湖泊水质参数对于水华暴发的影响和定量关系.结果发现,表征浮游植物生物量的叶绿素a(Chl-a)浓度与总磷(TP)、氮磷比(N/P)、水温(WT)之间存在长期的均衡关系,格兰杰因果关系模型和向量自回归模型(VAR)的结果显示,水体中TP浓度、N/P和WT是Chl-a含量变化的格兰杰原因,上述结果提供了湖泊水质参数与蓝藻生物量的定量关系,在其他水质参数保持不变的情况下,约1%湖泊TP含量、N/P和水温的变化分别造成0.97%、0.078%和0.55%的浮游植物生物量的变化.本研究为水华暴发研究过程中水质参数的定量化影响提供一个新颖的视角,考虑了时间滞后变量的时间序列分析方法也可以加深对水华暴发过程的理解.  相似文献   

6.
为了模拟河流水生态系统演变,探讨热带河流浮游植物和浮游动物生物量在流量影响下的沿程变化规律,在求解河流二维浅水方程的基础上,考虑浮游动物、浮游植物、悬浮碎屑、无机氮、无机磷等输运和演变子模型以及各子模型间的耦合作用机制,构建水生态动力数学模型,并将该模型应用于我国热带河流—海南南渡江下游龙塘坝至入海口段(长约28 km).数学模型采用ADI-QUICK格式差分方法对水动力学方程和对流扩散方程进行离散求解,进而驱动各类生物变量输运和演化.通过对河流水面线高程、营养盐含量、浮游生物生物量模拟值与实测值加以对比进行验证.实证结果表明,在生态参数合理率定前提下,忽略河流流量的时间变化,采用丰水期、平水期和枯水期工况下的代表流量加以概化,数值模拟仍能获得局部河段浮游生物生物量模拟值与实测值整体相符合的结果.浮游植物和浮游动物生物量均沿水流方向逐渐降低,但随流量的增大整体上呈降低趋势,丰水期上游浮游生物生物量为下游的1.6倍,枯水期达到9.3倍.受海水入侵、沿程污染排放等因素的影响,枯水期浮游生物生物量模拟值与实测值的偏差远大于丰水期.枯水期河道浮游植物和浮游动物生物量模拟值的最大值分别为77.71和38.56 mmol/m3(均以C计),约为丰水期的3.8倍,说明枯水期水质富营养化风险远高于丰水期.   相似文献   

7.
于2008年9~11月,对贵州红枫湖进行了每周一次采样监测,选取浮游植物及总磷、总氮、氨氮、pH值、水温、溶解氧、化学耗氧量、透明度等环境因子进行同步调查和研究,利用多样性指数法分析了浮游植物的多样性,采用多元线性回归和典范对应分析(CCA)方法对浮游植物和环境因子之间的关系进行探讨;运用绿藻指数和藻类综合指数水库的富营养化现状进行评价。结果显示:研究期内共鉴定出浮游植物82种,隶属于5门23科40属,浮游植物丰度在3.828×106~210.2375×106cell/L之间,生物量在1.310~26.965mg/L之间,其中蓝藻占总浮游植物丰度的95%,占总生物量的56.7%,以微囊藻属(Microcystis Kutz)为绝对优势属。Ⅰ~Ⅲ库区藻类Marglef多样性指数分别为4.459、3.681和3.954,相关性分析结果表明藻类种类数、细胞密度对数与水体pH之间呈显著的负相关关系;多样性指数d与pH值、水温、溶解氧、透明度呈显著的正或负相关关系;浮游植物种类与环境因子相关系数在轴1上达到0.967,隐藻主要受水温、总磷的影响;硅藻对环境具有较强的适应性,能适应较高的pH值和较低的水温;蓝藻、绿藻与氮磷营养盐、pH值表现出明显正负相关性。绿藻指数和藻类综合指数评价水体为富富营养至重富营养型。  相似文献   

8.
为了解不同区域生态修复后环境因子对浮游动植物群落分布的影响,于2021年1月(竣工后)对南湖A、 B、 C、 D和S区的环境因子及浮游动植物开展调查.结果表明,生态修复区较未修复区水体总氮(TN)、溶解性总氮(DTN)、氨氮(NH+4-N)、硝氮(NO-3-N)、总磷(TP)和溶解性总磷(DTP)浓度显著降低,溶解氧(DO)显著增高(P<0.05).研究区浮游植物种类以绿藻和硅藻为主,浮游动物种类以原生动物和轮虫为主.修复区浮游植物生物量较未修复区低,浮游植物与浮游动物物种数升高.聚类与主坐标分析显示修复区浮游动植物群落差异显著(P<0.05),其中A区和B区游动植物结构较为相似.冗余分析(RDA)结果显示,DO、 NO-3-N、 pH和水温(WT)是影响浮游植物群落分布的主要环境因子;DO、 NO-3-N、 NH+4-N和TP是驱动浮游动物群落分布的主要环...  相似文献   

9.
应用三维水质模型对大连湾水体中的藻类碳浓度的时空变化规律以及其影响因素进行了研究,选择主要的模型参数进行了灵敏度分析。由空间分布的模拟结果可知,在大连湾,藻类主要集中在排污口附近区域。由季节变化模拟结果可知,在湾顶部的排污口区藻类生产显示明显的季节变化趋势,在夏季,主要受到磷酸盐浓度的限制。灵敏度分析显示,在排污口区水体的扩散能力对藻类生产的影响较大,在湾中部和湾口区主要受到磷酸盐负荷的影响。模拟结果可以为大连湾的污染控制、水质规划和管理提供科学依据。  相似文献   

10.
为了探讨太湖春季藻类生长的磷营养盐阈值,采用原位营养盐富集生物模拟实验,研究了太湖梅梁湾浮游植物对不同浓度无机磷(PO43--P)的生长响应.结果表明:外源磷添加能显著的促进浮游植物生长,但存在阈值.当磷浓度低于0.02mg/L时,藻类生长速率和生物量是可控的,当磷浓度高于0.02mg/L时,生长速率和生物量没有变化,因此春季藻类生长的无机磷阈值为0.02mg/L,相当于总磷阈值为0.059mg/L.太湖目前只有部分湖区总磷年平均浓度处于总磷阈值以下,控制流域的磷负荷,降低太湖的浮游植物生物量将是一个长期过程.  相似文献   

11.
基于复杂网络同步特征的水华暴发数值模型   总被引:2,自引:0,他引:2  
基于复杂网络的同步特征和藻类动力学生长特性, 以汉江近年来水华污染的现场监测资料为例, 并结合氮磷浓度、水温等实测数据构建了水华暴发的数值模型, 用以描述藻类生长和水华暴发的动力学机制; 同时, 利用达到指定藻生物量临界值的网格数规模作为判定水域是否暴发水华以及规模大小的依据, 从复杂网络同步特性的角度验证了水华暴发的临界性和全局突发性, 进而揭示了水华暴发现象是水域子区域整体协同作用的结果. 计算结果表明, 如果达到临界值的网格数超过指定的规模, 相应水域将暴发水华, 且网格达到峰值状态持续的时间越长, 水华污染越严重.  相似文献   

12.
为了研究太原汾河景区的水质状况并为其水质保护和水华暴发预警及防治提供依据,2012年6月至10月,对该区域8个采样点的浮游藻类细胞密度、氨氮、总氮和总磷及它们之间的关系进行了调查分析。结果表明,多数样点总氮超标,总磷相对稳定,均不超标,氮磷比变化较明显,多数采样点以7月份的细胞密度较高,下游端较上游端浮游藻类生长旺盛,污染情况也较为严重。多数采样点浮游藻类细胞密度与总氮和氮磷比呈负相关,与总磷呈正相关。  相似文献   

13.
鄱阳湖浮游植物时空变化特征及影响因素分析   总被引:6,自引:0,他引:6  
在5月、9月、11月对鄱阳湖浮游植物开展野外调查,分析鄱阳湖浮游植物的时空分布特征及原因.结果表明:在群落结构上,鄱阳湖浮游植物样品中共发现8门107属,其中绿藻门54属,占浮游植物总数的50%.3次调查平均生物量最高的为硅藻门(蓝藻门藻细胞密度最高),生物量为0.29 mg·L-1,占浮游植物总生物量的28%,是鄱阳湖的优势藻门;其次分别为隐藻门、甲藻门和绿藻门,分别占26%、21%和17%.空间分布上,南部湖区浮游植物生物量最高,中部区次之,北部湖口水道区最低;时间分布上,5月份浮游植物生物量最高,11月份最低.温度、悬浮物和透明度是影响藻类时空分布的主要影响因素.鄱阳湖总体水动力较好,水华暴发总体风险小,但中部和南部水动力弱的湖区,藻量高,仍有水华风险.  相似文献   

14.
调查研究表明长春市新立城水库发生小范围藻类水华期间浮游植物藻类群落结构变化不明显,种群丰度增加。对监测数据进行了分析并与该地区非水华期间的监测数据相比较;同时对水质进行了环境因子相关性及对藻类水华的影响分析。结果显示溶解氧和温度是影响水库叶绿素a值变化的主要环境因子,且可以作为北方湖泊藻类水华预警的主要监测指标。  相似文献   

15.
若干人工调控措施对富营养化湖泊藻类种群的影响   总被引:31,自引:5,他引:26  
在太湖用围隔试验,研究湖泊底泥稳外源污染对富;营养化湖泊藻类种群的影响,结果表明,在没有底泥和外源污染(相于当彻底清淤和截污)的情况下,围区内(200m^2)水体氮磷浓度均有明显下降,但藻类生物量却急剧上升,且出现“藻华”,结合南京玄武湖和杭州西湖的截污、清淤挖泥、引水冲污等富营养化防治措施的实际效果分析,探讨了截污、清淤、引水冲污对营养几湖泊藻类种群的影响,指出对严重富营养化的湖泊,单纯采取截污  相似文献   

16.
千岛湖蓝藻生物量制约因素分析   总被引:2,自引:0,他引:2  
以千岛湖监测数据为依据,运用相关性分析和多元逐步回归统计方法,对蓝藻生物量与环境理化指标的关系进行研究分析,找出与蓝藻生物量显著相关的环境因子,建立多元逐步回归方程,预测千岛湖藻类生物量的变化情况,分析结果表明,水温,水深和总磷为蓝藻生物量的显著相关因子。  相似文献   

17.
Understanding the process of the changing phytoplankton patterns can be particularly useful in water quality improvement and management decisions.However,it is generally not easy to illustrate the interactions between phytoplankton biomass and related environmental variables given their high spatial and temporal heterogeneity.To elucidate relationships between them,in a eutrophic shallow lake,Taihu Lake,relative long-term data set of biotic and abiotic parameters of water quality in the lake were conducted using multivariate statistical analysis within seasonal periodicity.The results indicate that water temperature and total phosphorus(TP)played governing roles in phytoplankton dynamics in most seasons(i.e.temperature in winter,spring and summer; TP in spring,summer and autumn); COD(chemical oxygen demand)and BOD(biological oxygen demand)presented significant positive relationships with phytoplankton biomass in spring,summer and autumn.However,a complex interplay was found between phytoplankton biomass and nitrogen considering significant positive relationships occurring between them in spring and autumn,and conversely negative ones in summer.As the predatory factor,zooplankton presented significant grazing-pressure on phytoplankton biomass during summer in view of negative relationship between them in the season.Significant feedback effects of phytoplankton development were identified in summer and autumn in view that significant relationships were observed between phytoplankton biomass and pH,Trans(transparency of water)and DO.The results indicate that interactions between phytoplankton biomass and related environmental variables are highly sensitive to seasonal periodicity,which improves understanding of different roles of biotic and abiotic variables upon phytoplankton variability,and hence,advances management methods for eutrophic lakes.  相似文献   

18.
Understanding the process of the changing phytoplankton patterns can be particularly useful in water quality improvement and management decisions. However, it is generally not easy to illustrate the interactions between phytoplankton biomass and related environmental variables given their high spatial and temporal heterogeneity. To elucidate relationships between them, in a eutrophic shallow lake, Taihu Lake, relative long-term data set of biotic and abiotic parameters of water quality in the lake were conducted using multivariate statistical analysis within seasonal periodicity. The results indicate that water temperature and total phosphorus (TP) played governing roles in phytoplankton dynamics in most seasons (i.e. temperature in winter, spring and summer; TP in spring, summer and autumn); COD (chemical oxygen demand) and BOD (biological oxygen demand) presented significant positive relationships with phytoplankton biomass in spring, summer and autumn. However, a complex interplay was found between phytoplankton biomass and nitrogen considering significant positive relationships occurring between them in spring and autumn, and conversely negative ones in summer. As the predatory factor, zooplankton presented significant grazing-pressure on phytoplankton biomass during summer in view of negative relationship between them in the season. Significant feedback effects of phytoplankton development were identified in summer and autumn in view that significant relationships were obser,qed between phytoplankton biomass and pH, Trans (transparency of water) and DO. The results indicate that interactions between phyto:plankton biomass and related environmental variables are highly sensitive to seasonal periodicity, which improves understanding of different roles of biotic and abiotic variables upon phytoplankton variability, and hence, advances management methods for eutrophic lakes.  相似文献   

19.
星云湖浮游植物和水环境特征研究及相关性分析   总被引:3,自引:0,他引:3  
于2010年9月(丰水期)和2011年3月(枯水期)对星云湖水环境特征进行调查研究。结果表明星云湖枯水期各营养盐分布较均匀;而丰水期藻类的大量繁殖打乱了水体中营养盐的均匀分布。对水生态调查结果显示,星云湖丰水期叶绿素a含量最高达到了736.56 mg/m3,位于螺狮铺和大庄河附近,浮游植物总量最高达到6.1×109个/L,蓝藻为优势种;枯水期叶绿素a含量最高达到了89.28 mg/m3,位于陈家湾和河咀附近,浮游植物总量最高达到1.04×109个/L。通过相关性分析和聚类分析可知,星云湖浮游植物总量与叶绿素a和总氮呈显著性相关关系,在丰水期和枯水期星云湖水环境状况存在较大的差别,水质易受外界环境条件的影响。在星云湖水华防治工作中,建议重点应关注各湖湾区域,尤其是南部区域的螺狮铺和大庄河附近。  相似文献   

20.
苏南水库硅藻群落结构特征及其控制因素   总被引:11,自引:8,他引:3  
为了解我国东南湿润区丘陵山地型水库硅藻的群落结构特征和控制因素,于2015年6月硅藻水华敏感期对苏南地区18座水库的浮游植物群落结构和水质进行调查,分析了营养盐、水深、库容等因素与硅藻及其它浮游生物的关系.结果表明,硅藻达到轻度水华水平(硅藻细胞含量介于100~1 000万cells·L~(-1))的水库有10座,对供水和景观功能产生明显影响;苏南地区水库普遍处于中营养和富营养水平,总氮浓度普遍偏高,磷及营养状态指数与硅藻生物量的关系密切;苏南地区水库中的浮游植物在数量上以蓝藻门中的席藻为主,在生物量上则以硅藻门、绿藻门和蓝藻门为主,其中硅藻门浮游植物平均占总浮游植物生物量的46.8%,是浮游植物异常增殖的主要门类;硅藻门中,主要是针杆藻、小环藻、曲壳藻和直链藻这4个种属占优,特别是针杆藻和小环藻,平均占硅藻总生物量的51.6%和21.4%;较深的水体,利于硅藻成为主要优势藻门;较大的水库流域库容比和较高总磷水平会导致水库营养水平和叶绿素浓度增加,促进浮游植物从硅藻门向绿藻门、蓝藻门演替,增加藻类危害的风险.因此,对于该地区水库,需要加强流域管理,并且针对水库自身的特点,包括水深、流域库容比等,确定其特定的富营养化控制策略,从而减少硅藻等藻类水华发生的风险,提升水源地水质安全保障能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号