首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了快速高效地处理突发性事故造成的苯胺污染土壤,在水泥固化稳定化苯胺污染土壤时加入过硫酸盐和活性炭,评估固化稳定化产物中苯胺的浸出特征和降解机理. 结果表明:①过硫酸盐的加入可以快速有效地去除污染土壤中高浓度(10 g/kg)的苯胺,当反应时间为10 min、过硫酸盐添加量为1.0 eq(即过硫酸盐与土壤中苯胺的摩尔浓度比为1.0)时,处理后土壤中苯胺残留量为1 345 mg/kg;过硫酸盐添加量为2.0 eq时,苯胺残留量为43 mg/kg,反应时间对苯胺的去除效率影响不大,碱性条件有利于苯胺的降解. ②过硫酸盐-活性炭-水泥复合固化稳定化剂可以有效固化稳定化高浓度苯胺污染土壤,过硫酸盐的加入可以有效氧化土壤中的苯胺,是浸出液中ρ(苯胺)降低的主要因素;活性炭的加入可以进一步吸附残留的苯胺及降解产物,使浸出液中ρ(TOC)大幅降低;水泥水化产生的强碱性和温度升高有助于过硫酸盐对苯胺的氧化降解. ③苯胺氧化降解产物分析发现,偶氮苯、苯酚和联苯胺是苯胺的主要降解产物.   相似文献   

2.
采用零价铁(Fe~0)与过硫酸盐构建异相类芬顿体系,由Fe0腐蚀释放Fe~(2+)催化S_2 O_8~(2-)产生硫酸根自由基快速降解偶氮染料活性艳橙,考察了初始p H值、Fe~0投加量、过硫酸盐投加量和温度对降解过程的影响。结果表明,当活性艳橙初始浓度为100 mg/L、pH值为7、Fe~0投加量为0.5 g/L、过硫酸盐投加量为1 mmol/L和反应温度为30℃时,反应60 min后活性艳橙降解率达到92.6%。酸性条件和提高反应温度均有利反应的进行,而且活性艳橙的降解率在初始pH值为9时也高于90%。反应过程符合准一级动力学,表观反应速率常数k为0.0513 min~(-1)(30℃)。UV-Vis扫描显示,活性艳橙的发色基团在反应过程中被破坏。由Fe~0与S_2O_8~(2-)构成的异相Fenton体系可作为一种高效手段用于染料废水的处理。  相似文献   

3.
吉非罗齐在热活化过硫酸盐体系中的降解机制研究   总被引:2,自引:1,他引:1  
以降血脂药物吉非罗齐(GEM)为目标污染物,研究其在热活化过硫酸盐体系中的降解机制.结果表明,GEM的降解过程符合准一级反应动力学规律,增加过硫酸盐初始浓度或升高反应溶液温度都可以显著提高GEM的降解速率常数(kobs),其反应的表观活化能Ea为133.14k J·mol~(-1).酸性和中性条件下GEM的降解效果要好于碱性条件.自然水体中的腐植酸(HA)和HCO_3~-对GEM的降解有明显的抑制作用.自由基清除实验表明,在酸性和中性条件下,SO_4~(·-)对GEM的降解起主导作用,而在碱性条件下,HO·成为体系主要的氧化物种.利用HPLC-MS/MS技术共检测到11种中间产物,推测GEM的降解路径涉及苯环的羟基化和醛基化反应、苯环侧链的环化作用和脱羧反应以及醚支链的断裂.  相似文献   

4.
李一凡  王应军  廖鑫 《环境科学研究》2018,31(11):1949-1956
含酚类废水所含有毒有害物质主要为苯酚,其排放量大,微溶于水且毒性较大,难以彻底处理.利用具有吸附性和催化性的CuO/Ac(活性炭负载CuO)催化过硫酸盐产生强氧化性的SO4-·(硫酸根自由基)对模拟废水中苯酚进行降解,研究了不同因素(如反应温度、pH、水浴时间、CuO负载比、过硫酸盐投加量)对反应前、后模拟废水中苯酚和CODCr的去除率,并通过正交试验对这些因素进行了优化.结果表明:①过硫酸盐高级氧化法对苯酚的去除过程以氧化降解为主,在投加0.2 g负载比为1:5的CuO/Ac和过硫酸盐前提下,反应条件为pH 3、反应温度65℃,经过6 h的水浴反应,CuO/Ac催化过硫酸盐对于模拟废水中苯酚和CODCr的去除率分别可达到96.83%和91.90%.②通过正交试验得出,影响苯酚去除率大小的因素依次为反应温度>反应时间> pH,影响CODCr去除率大小的因素依次为反应温度> pH >反应时间.③在酸性、强碱性、高温条件下反应体系对苯酚的降解作用更明显,苯酚降解过程为先开环再进一步降解;相对于单独采用过硫酸盐和活性炭催化过硫酸盐法,采用活性炭负载CuO催化过硫酸盐法对模拟苯酚废水中苯酚具有去除率高、节省成本、处理速度快等优点.研究显示:在相同的试验设计情况下,应先考虑温度对反应的影响;在反应温度相同的条件下,根据对苯酚或对CODCr的去除率的不同要求,分别优先考虑反应时间、pH对试验的影响.   相似文献   

5.
采用过硫酸钠/双氧水双氧化体系光催化氧化降解水中邻苯二甲酸酯类有机污染物,考察了过硫酸钠/双氧水的投加比例、紫外光强、溶液pH以及邻苯二甲酸二辛酯(DOP)的初始浓度等因素对降解率的影响,并在优化条件下对降解反应的动力学进行了考察。结果表明:室温下,过硫酸钠和双氧水浓度均为0.2mol/L且体积比为1:1,pH=7.0,光照距离为0.5cm,反应80min,DOP降解率达98%以上,反应动力学研究表明,过硫酸钠/双氧水双氧化体系光催化氧化降解水中DOP反应为表观一级。优于相同条件下两种氧化剂单独使用对DOP的降解效果。  相似文献   

6.
Kinetics of aniline oxidation with chlorine dioxide   总被引:4,自引:0,他引:4  
For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction was first-order both in ClO2 and in aniline, and the oxidation reaction could be described as second-order reaction. Stoichiometric factor η was experimentally determined to be 2.44. The second-order-reaction rate constant k was 0.11L/(mol.s)under condition of pH 6.86 and water temperature(Tw) 287K. Reaction activation energy was 72.31 kJ/mol, indicating that the reaction could take place under usual water treatment conditions. The reaction rate constants in acidic and alkali media were greater than that in neutral medium. Chlorite ion could slightly increase reaction rate in acidic medium. p-aminophenol and azobenzene were detected by GC-MS as intermediates.  相似文献   

7.
为了探究氧化与还原预处理对氧化-还原联合技术修复硝基苯污染地下水的影响,选取2,4-DNT(2,4-二硝基甲苯)为研究对象,构建过硫酸盐/铁炭修复技术体系,分别设置2个试验槽,一个试验槽以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理,另一个试验槽以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理,对比研究构建的氧化-还原联合系统中不同氧化与还原预处理方式对2,4-DNT去除机制的影响.结果表明:①过硫酸盐氧化材料填充位置显著影响试验槽pH和ORP(氧化还原电位)的变化,在运行周期5 PV(PV为孔隙体积,1 PV时间约为4 h)内,pH可显著增至11左右,ORP值达到最高.②在运行周期5 PV内,氧化填充层S2O82-浓度和还原填充层Fe2+浓度均显著降低.③在运行周期5 PV内,随运行周期的增加,以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理的协同技术体系对2,4-DNT的去除效果显著降低,以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理的协同技术体系对2,4-DNT的去除率维持在100%.④通过液相-质谱联用技术,识别构建的氧化-还原联合技术体系内2,4-DNT降解的主要中间产物,同时结合铁炭微电解还原机制和过硫酸盐氧化机制提出了2,4-DNT协同处理机制及其可能的降解路径.研究显示,还原预处理更有利于氧化-还原联合技术对地下水中2,4-DNT的去除,可为有效处理硝基苯化合物污染地下水提供理论支撑.   相似文献   

8.
过硫酸钠是污染土壤化学氧化修复技术中应用较为广泛的氧化剂.为研究过硫酸钠对不同土壤中PAHs(polycyclic aromatic hydrocarbons,多环芳烃)的修复效果,以我国多种典型土壤(黑土、潮土、黄土、紫色土、褐土、砖红壤)为试验样本,以萘、菲、蒽、芘、苯并[a]芘5种PAHs为目标污染物,分析活化过硫酸钠对人为老化的降解率;此外,通过对氧化前后土壤pH、w(有机碳)等土壤性质变化的比较和分析,探讨氧化修复过程对土壤性质的影响.结果表明:当活化过硫酸钠用量为0.8 mmol/g、温度为25℃时,PAHs污染土壤中萘、菲、蒽、芘、苯并[a]芘的降解率最高,分别为87.82%、79.68%、87.93%、83.40%、94.31%.随着温度的升高,PAHs降解率逐渐升高,当温度达到25℃时,PAHs的降解率(85.69%)达到最高,随后随着温度的继续升高,总PAHs的降解率没有明显增加;随着pH的升高,PAHs的降解率逐渐升高,当pH达到6~7时,PAHs降解率维持在一个较高水平;随后随着pH的继续升高,总PAHs的降解率逐渐降低.随着温度以及pH的变化,5种PAHs的降解率与总PAHs的降解率变化趋势一致. w(有机碳)越低,PAHs环数越高,PAHs降解率越高;高环(5~6环)、中环(4环)、低环(2~3环)PAHs降解率与总PAHs降解率变化趋势一致.此外,过硫酸钠氧化修复后土壤结构遭到一定程度的破坏,土壤的pH、w(有机碳)和土壤肥力会有不同程度的下降,对土壤的再次利用有较大影响.研究显示,过硫酸钠可有效氧化降解不同性质土壤中PAHs,在氧化修复PAHs污染土壤方面具有较好的应用前景.   相似文献   

9.
为深度处理偶氮染料废水,以甲基橙(MO)为目标污染物,研究了亚硫酸盐活化过硫酸盐产活性物种的新型高级氧化处理方法,并对活化机制、氧化机理及动力学理论进行分析.通过对SO32-/S2O82-,S2O82-,SO32-3种体系进行降解对比和ESR等技术表征对比,发现亚硫酸盐能显著活化过硫酸根产生硫酸根自由基,其能氧化破坏MO偶氮双键形成的共轭体系,有较好的脱色降解效果.考察了亚硫酸盐和过硫酸盐摩尔比、过硫酸盐投加量、初始pH值对降解效果的影响,结果表明当初始pH值为3.0,摩尔比1:1,投加量为20.0mmol/L、反应时间在300min下对MO降解率能达到96.1%,进一步发现该体系对初始pH值的适应范围较广(3.0~11.0).基于Box-behnken设计的响应面模拟和方差分析得到了可达显著水平的二次响应曲面模型,影响因子对MO降解的贡献排序为:过硫酸盐投加量 > 初始pH值 > 摩尔比.初始MO浓度动力学分析发现不同初始浓度下对MO的降解过程遵循准二级反应动力学规律,反应动力学常数从1.8212×10-4~2.4649×10-4min-1.另一方面发现升高反应温度可以促进体系对MO的降解,根据不同温度下活化过程的反应速率常数的阿累尼乌斯准二级反应的活化能计算结果(Ea=44.9kJ/mol),发现其相比常规金属活化方式较低,因此该体系对有毒有害的工业有机废水处理有潜在的商业应用价值.  相似文献   

10.
Ru(Ⅲ) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(Ⅲ) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(Ⅲ) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(Ⅲ), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(Ⅲ) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)^-1 sec^-1 with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(Ⅲ), as an electron shuttle, was oxidized by permanganate to Ru(Ⅵ) and Ru(Ⅶ), which acted the co-oxidants for decomposition of aniline. Although Ru(Ⅲ) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(Ⅲ) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(Ⅲ) toward permanganate oxidation in our future study.  相似文献   

11.
采用前置硫化法合成制备硫化纳米铁,研究其与过硫酸盐对硝基苯的联合降解效果,检测反应前后溶液中铁离子和TOC浓度变化,对反应前后的S-NZVI进行表征,分析S-NZVI和PS对NB的联合降解机制.以纳米硅胶溶液为胶结剂,以PS为活性成分,制备缓释PS溶胶,注入砂柱中扩散形成凝胶,与S-NZVI构成S-NZVI/PS组合反应带,研究其对模拟硝基苯污染地下水的原位修复效果.结果表明,S-NZVI能够高效去除NB并生成大量苯胺(AN),S-NZVI被PS氧化产生的Fe2+与PS组成活化过硫酸盐,对AN具有较好的降解和矿化效果.当NB浓度为100mg/L、S-NZVI和PS的投加量分别为0.5,2.5g/L时,NB去除率达91%,AN出水浓度为1.96mg/L,TOC去除率达64.09%.反应后S-NZVI的主要铁氧化产物为Fe3O4和FeO(OH).反应带实验结果表明,S-NZVI/PS组合反应带可有效去除地下水的NB并高效消减NB还原产生的AN,当进水中NB浓度为100mg/L,流量为0.4mL/min,注入S-NZVI含量为1200mg/L的浆液200mL,二氧化硅含量为30%、PS含量为12.5%的PS凝胶4.8g时,S-NZVI/PS组合反应带7d内对AN的去除率最高达97.6%,NB当量累计去除率为83.7%.  相似文献   

12.
采用前置硫化法合成制备硫化纳米铁,研究其与过硫酸盐对硝基苯的联合降解效果,检测反应前后溶液中铁离子和TOC浓度变化,对反应前后的S-NZVI进行表征,分析S-NZVI和PS对NB的联合降解机制.以纳米硅胶溶液为胶结剂,以PS为活性成分,制备缓释PS溶胶,注入砂柱中扩散形成凝胶,与S-NZVI构成S-NZVI/PS组合反应带,研究其对模拟硝基苯污染地下水的原位修复效果.结果表明,S-NZVI能够高效去除NB并生成大量苯胺(AN),S-NZVI被PS氧化产生的Fe2+与PS组成活化过硫酸盐,对AN具有较好的降解和矿化效果.当NB浓度为100mg/L、S-NZVI和PS的投加量分别为0.5,2.5g/L时,NB去除率达91%,AN出水浓度为1.96mg/L,TOC去除率达64.09%.反应后S-NZVI的主要铁氧化产物为Fe3O4和FeO(OH).反应带实验结果表明,S-NZVI/PS组合反应带可有效去除地下水的NB并高效消减NB还原产生的AN,当进水中NB浓度为100mg/L,流量为0.4mL/min,注入S-NZVI含量为1200mg/L的浆液200mL,二氧化硅含量为30%、PS含量为12.5%的PS凝胶4.8g时,S-NZVI/PS组合反应带7d内对AN的去除率最高达97.6%,NB当量累计去除率为83.7%.  相似文献   

13.
以喹啉为处理目标物,采用Fe2+活化K2S2O8(PS)的高级氧化体系在不同环境因素下降解喹啉.结果表明:与单一PS体系和Fe2+体系相比,Fe2+/PS体系可以有效降解喹啉.在初始喹啉浓度为250mg/L,喹啉/PS物质的量比为1:10,PS/Fe2+物质的量比为3,初始pH3,反应温度为45℃,反应时间为80min的条件下,喹啉降解率可达100%.提高PS和Fe2+浓度均能有效提高喹啉降解率,但超过一定限值后对喹啉去除效果不明显.Fe2+/PS去除喹啉的过程符合一级反应动力学.溶液初始pH值越高,喹啉去除率越低;反应温度越高,喹啉去除率越高.自由基淬灭实验证实,Fe2+活化PS体系中有SO4-·和OH·的存在,其中由SO4-·产生的OH·对喹啉的降解占主导地位.通过GC/MS检测到2种中间产物8-羟基喹啉和2(1H)-喹啉酮,据此推测基于硫酸根自由基强化喹啉降解的可能路径.大肠杆菌急性毒性实验结果证实,虽然Fe2+/PS体系去除喹啉过程中产生了毒性更强的中间产物,但酸性条件和较高的反应温度有利于体系脱毒.  相似文献   

14.
以喹啉为处理目标物,采用Fe2+活化K2S2O8(PS)的高级氧化体系在不同环境因素下降解喹啉.结果表明:与单一PS体系和Fe2+体系相比,Fe2+/PS体系可以有效降解喹啉.在初始喹啉浓度为250mg/L,喹啉/PS物质的量比为1:10,PS/Fe2+物质的量比为3,初始pH3,反应温度为45℃,反应时间为80min的条件下,喹啉降解率可达100%.提高PS和Fe2+浓度均能有效提高喹啉降解率,但超过一定限值后对喹啉去除效果不明显.Fe2+/PS去除喹啉的过程符合一级反应动力学.溶液初始pH值越高,喹啉去除率越低;反应温度越高,喹啉去除率越高.自由基淬灭实验证实,Fe2+活化PS体系中有SO4-·和OH·的存在,其中由SO4-·产生的OH·对喹啉的降解占主导地位.通过GC/MS检测到2种中间产物8-羟基喹啉和2(1H)-喹啉酮,据此推测基于硫酸根自由基强化喹啉降解的可能路径.大肠杆菌急性毒性实验结果证实,虽然Fe2+/PS体系去除喹啉过程中产生了毒性更强的中间产物,但酸性条件和较高的反应温度有利于体系脱毒.  相似文献   

15.
热活化过硫酸盐(PS)可降解有机污染物,但通常需要较高的反应温度,成为制约降解效率的关键因素之一.为提高热活化PS效率,向反应体系中加入活性炭(AC)并以对硝基苯酚(PNP)为目标污染物,考察AC强化热活化PS降解PNP的效率,分析pH值、PS浓度和AC投加量等因素对PNP降解的影响,确定最佳反应条件.结果表明,AC可以明显强化热活化PS降解PNP,在AC=1.0g/L,PS=2.0mmol/L,PNP=10.0mg/L,T=50℃和pH=3.5条件下,120min时AC/PS体系对PNP降解率可达100.00%,而PS体系对PNP降解率仅为31.69%.自由基猝灭实验表明,AC/PS/PNP体系为自由基反应,SO4·-和·OH共同参与PNP降解且以SO4·-为主导.机制分析阐明AC上的表面缺陷为活性位点,其与PS中O—O键作用导致O—O键键能降低,进而O—O在热活化下均裂形成SO4·-.PNP降解中间产物分析表明AC仅提高了热活化PS降解PNP反应速率,未改变PNP的降解路径.  相似文献   

16.
以直接热氧化制备的TiO2为催化剂,采用单双槽光反应器,研究了水中苯胺的光电催化降解行为,结果表明:氧的还原反应不是光电催化反应的速率控制步骤,但氧的还原和还原产物能加快苯胺的光电催化降解速率,单槽光电反应器中,当pH由4.38升至10.30,苯胺降解反应速率是逐渐增大。当pH大于10.30后,反应速率迅速下降,使用双槽反应器,阳极室鼓氮气时,苯胺的反应速率始终随pH的升高而下降,而不阳极室鼓空气时,苯胺反应速率在pH9.0左右时最大,在相同的气氛条件下,苯胺在单槽的光电催化反应速率大于双槽的速率,利用光电流的大小可判断反应速率的快慢,但光电流的利用效率与溶液pH,氧和电压有关。  相似文献   

17.
热活化过硫酸盐(PS)可降解有机污染物,但通常需要较高的反应温度,成为制约降解效率的关键因素之一.为提高热活化PS效率,向反应体系中加入活性炭(AC)并以对硝基苯酚(PNP)为目标污染物,考察AC强化热活化PS降解PNP的效率,分析pH值、PS浓度和AC投加量等因素对PNP降解的影响,确定最佳反应条件.结果表明,AC可以明显强化热活化PS降解PNP,在AC=1.0g/L,PS=2.0mmol/L,PNP=10.0mg/L,T=50℃和pH=3.5条件下,120min时AC/PS体系对PNP降解率可达100.00%,而PS体系对PNP降解率仅为31.69%.自由基猝灭实验表明,AC/PS/PNP体系为自由基反应,SO4·-和·OH共同参与PNP降解且以SO4·-为主导.机制分析阐明AC上的表面缺陷为活性位点,其与PS中O—O键作用导致O—O键键能降低,进而O—O在热活化下均裂形成SO4·-.PNP降解中间产物分析表明AC仅提高了热活化PS降解PNP反应速率,未改变PNP的降解路径.  相似文献   

18.
考察了对苯醌(HQ)活化过硫酸盐(PS)过程中降解罗丹明B(RhB)的动力学特征及其影响因素.结果表明:HQ含量、pH值以及温度对活化PS降解RhB的动力学过程和特征均产生不同程度的影响.在pH=4.6时,HQ能有效活化PS,显著促进其对罗明丹B的降解效能;随着体系中HQ含量的上升,RhB的降解程度得到提升,反应速率常数k的值与体系中HQ含量之间呈线性相关.在HQ的活化作用下,PS降解RhB反应的活化能由41.99kJ/mol降低至13.90kJ/mol,RhB降解程度和反应速率均得到提升.当pH=4.6,HQ=0.1mmol/L以及PS=1.0mmol/L时,HQ活化PS的过程中罗丹明B降解率可高达90%以上,反应速率增加了106%.染料RhB在充当表征活化PS效果试剂的同时,也积极参与了HQ活化PS过程,使得“HQ-RhB-PS”耦合体系的氧化降解能力得到显著提升.  相似文献   

19.
地下水中广泛存在的氯离子(Cl?)会在自由基作用下生成氯活性物质,进而与污染物反应可能引发新的环境风险. 为研究Cl?影响过硫酸盐(PS)高级氧化技术修复苯酚污染地下水的效果及机理,采用热活化PS氧化体系考察温度、PS浓度、初始pH及Cl?浓度对苯酚降解效果的影响,结合三维荧光平行因子分析(EEM-PARAFAC)查明苯酚降解过程中体系的光谱特征,借助气相色谱-质谱联用仪识别氯代有毒副产物的数量及种类,并揭示其降解机理. 结果表明:①反应温度的升高和PS浓度的增加均可促进苯酚的降解,且降解过程符合伪一级动力学模型. ②Cl?的存在会加速热活化PS对苯酚的降解,其降解效率随Cl?浓度的增加而提高,当Cl?浓度为10、25和50 mmol/L时,反应5 h后苯酚降解率为100%. ③苯酚降解过程中反应体系的荧光特征可分为4种荧光组分(C1、C2、C3和C4),Cl?存在时,C1和C2组分的荧光强度降幅更大,C3和C4组分主要为苯酚降解产物的光谱特征,其中C3组分的荧光强度随反应时间延长呈先增强后降低趋势. ④根据质谱测试结果,推断出Cl?存在时苯酚降解的可能机理,主要包括羟基化/氧化和氯化作用,其中生成的氯代有毒副产物包括2-氯苯酚、4-氯苯酚、2,4-二氯苯酚、氯氢醌、3,5-二氯儿茶酚、2,3-二氯-2-甲基丁烷和2-氯-4-甲基-2-戊醇. 研究显示,Cl?会提升热活化PS对苯酚污染地下水的修复效率,但也会因氯化作用生成氯代有毒副产物.   相似文献   

20.
利用热活化过硫酸盐技术去除阿特拉津   总被引:5,自引:3,他引:2  
利用热活化过硫酸盐(S2O2-8)技术去除水中的阿特拉津(ATZ).结果表明,增加溶液中S2O2-8浓度或提高溶液反应温度,可加速ATZ的降解.ATZ的降解是一个二级反应,其速率和溶液中ATZ和S2O2-8的浓度都成正比.初始pH为3.0~10.0时,S2O2-8对ATZ都有很好的降解效果,在酸性和中性时,降解效率高于碱性条件.利用自由基探针发现,在酸性和中性条件下,起降解作用的主要是SO·-4,而碱性条件下OH·占主导.ATZ的降解受到Cl-、CO2-3和腐殖质(HA)的影响.其中,Cl-对反应的影响比较复杂,低浓度时Cl-会生成具有高氧化还原电位的Cl·促进ATZ的降解,而高浓度时Cl·会继续反应生成氧化能力相对较弱的Cl2·-,从而抑制反应的进行.HA和CO2-3都对反应有明显的抑制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号